metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4○D28, D28⋊5C2, C4○Dic14, C4.16D14, Dic14⋊5C2, C14.4C23, C22.2D14, C28.16C22, D14.1C22, Dic7.2C22, (C2×C4)⋊3D7, (C2×C28)⋊4C2, (C4×D7)⋊4C2, C4○(C7⋊D4), C7⋊1(C4○D4), C7⋊D4⋊3C2, C2.5(C22×D7), (C2×C14).11C22, SmallGroup(112,30)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4○D28
G = < a,b,c | a4=c2=1, b14=a2, ab=ba, ac=ca, cbc=a2b13 >
(1 32 15 46)(2 33 16 47)(3 34 17 48)(4 35 18 49)(5 36 19 50)(6 37 20 51)(7 38 21 52)(8 39 22 53)(9 40 23 54)(10 41 24 55)(11 42 25 56)(12 43 26 29)(13 44 27 30)(14 45 28 31)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 41)(30 40)(31 39)(32 38)(33 37)(34 36)(42 56)(43 55)(44 54)(45 53)(46 52)(47 51)(48 50)
G:=sub<Sym(56)| (1,32,15,46)(2,33,16,47)(3,34,17,48)(4,35,18,49)(5,36,19,50)(6,37,20,51)(7,38,21,52)(8,39,22,53)(9,40,23,54)(10,41,24,55)(11,42,25,56)(12,43,26,29)(13,44,27,30)(14,45,28,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,41)(30,40)(31,39)(32,38)(33,37)(34,36)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)>;
G:=Group( (1,32,15,46)(2,33,16,47)(3,34,17,48)(4,35,18,49)(5,36,19,50)(6,37,20,51)(7,38,21,52)(8,39,22,53)(9,40,23,54)(10,41,24,55)(11,42,25,56)(12,43,26,29)(13,44,27,30)(14,45,28,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,41)(30,40)(31,39)(32,38)(33,37)(34,36)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50) );
G=PermutationGroup([[(1,32,15,46),(2,33,16,47),(3,34,17,48),(4,35,18,49),(5,36,19,50),(6,37,20,51),(7,38,21,52),(8,39,22,53),(9,40,23,54),(10,41,24,55),(11,42,25,56),(12,43,26,29),(13,44,27,30),(14,45,28,31)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,41),(30,40),(31,39),(32,38),(33,37),(34,36),(42,56),(43,55),(44,54),(45,53),(46,52),(47,51),(48,50)]])
C4○D28 is a maximal subgroup of
Dic14⋊C4 D28⋊4C4 D28.2C4 D56⋊7C2 D28.C4 C8⋊D14 C8.D14 D4.D14 C28.C23 D4.8D14 D4⋊6D14 Q8.10D14 D7×C4○D4 D4⋊8D14 D4.10D14 D28⋊6C6 D28⋊5S3 D84⋊C2 D6.D14 Dic7.D6 D84⋊11C2
C4○D28 is a maximal quotient of
C4×Dic14 C28.6Q8 C42⋊D7 C4×D28 C4.D28 C42⋊2D7 C23.D14 D14.D4 D14⋊D4 Dic7.D4 Dic7.Q8 D14.5D4 D14⋊Q8 C4⋊C4⋊D7 C28.48D4 C23.21D14 C4×C7⋊D4 C23.23D14 C28⋊7D4 D28⋊5S3 D84⋊C2 D6.D14 Dic7.D6 D84⋊11C2
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 7A | 7B | 7C | 14A | ··· | 14I | 28A | ··· | 28L |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 14 | 14 | 1 | 1 | 2 | 14 | 14 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D7 | C4○D4 | D14 | D14 | C4○D28 |
kernel | C4○D28 | Dic14 | C4×D7 | D28 | C7⋊D4 | C2×C28 | C2×C4 | C7 | C4 | C22 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 6 | 3 | 12 |
Matrix representation of C4○D28 ►in GL2(𝔽29) generated by
17 | 0 |
0 | 17 |
17 | 26 |
18 | 2 |
1 | 0 |
5 | 28 |
G:=sub<GL(2,GF(29))| [17,0,0,17],[17,18,26,2],[1,5,0,28] >;
C4○D28 in GAP, Magma, Sage, TeX
C_4\circ D_{28}
% in TeX
G:=Group("C4oD28");
// GroupNames label
G:=SmallGroup(112,30);
// by ID
G=gap.SmallGroup(112,30);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-7,46,182,2404]);
// Polycyclic
G:=Group<a,b,c|a^4=c^2=1,b^14=a^2,a*b=b*a,a*c=c*a,c*b*c=a^2*b^13>;
// generators/relations
Export