Copied to
clipboard

G = D4×D7order 112 = 24·7

Direct product of D4 and D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×D7, C41D14, C28⋊C22, D283C2, C221D14, D142C22, C14.5C23, Dic71C22, C72(C2×D4), (C4×D7)⋊1C2, (C7×D4)⋊2C2, C7⋊D41C2, (C2×C14)⋊C22, (C22×D7)⋊2C2, C2.6(C22×D7), SmallGroup(112,31)

Series: Derived Chief Lower central Upper central

C1C14 — D4×D7
C1C7C14D14C22×D7 — D4×D7
C7C14 — D4×D7
C1C2D4

Generators and relations for D4×D7
 G = < a,b,c,d | a4=b2=c7=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 220 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, D4, D4, C23, D7, D7, C14, C14, C2×D4, Dic7, C28, D14, D14, D14, C2×C14, C4×D7, D28, C7⋊D4, C7×D4, C22×D7, D4×D7
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22×D7, D4×D7

Character table of D4×D7

 class 12A2B2C2D2E2F2G4A4B7A7B7C14A14B14C14D14E14F14G14H14I28A28B28C
 size 1122771414214222222444444444
ρ11111111111111111111111111    trivial
ρ21111-1-1-1-11-1111111111111111    linear of order 2
ρ311-1-1-1-1111-1111111-1-1-1-1-1-1111    linear of order 2
ρ411-1-111-1-111111111-1-1-1-1-1-1111    linear of order 2
ρ5111-1-1-1-11-1111111111-1-1-11-1-1-1    linear of order 2
ρ6111-1111-1-1-111111111-1-1-11-1-1-1    linear of order 2
ρ711-1111-11-1-1111111-1-1111-1-1-1-1    linear of order 2
ρ811-11-1-11-1-11111111-1-1111-1-1-1-1    linear of order 2
ρ92-200-220000222-2-2-2000000000    orthogonal lifted from D4
ρ102-2002-20000222-2-2-2000000000    orthogonal lifted from D4
ρ1122-220000-20ζ767ζ7572ζ7473ζ7572ζ7473ζ7677677473ζ767ζ7572ζ7473757274737677572    orthogonal lifted from D14
ρ122222000020ζ7473ζ767ζ7572ζ767ζ7572ζ7473ζ7473ζ7572ζ7473ζ767ζ7572ζ767ζ7572ζ7473ζ767    orthogonal lifted from D7
ρ13222-20000-20ζ767ζ7572ζ7473ζ7572ζ7473ζ767ζ767ζ747376775727473ζ757274737677572    orthogonal lifted from D14
ρ1422-220000-20ζ7572ζ7473ζ767ζ7473ζ767ζ75727572767ζ7572ζ7473ζ767747376775727473    orthogonal lifted from D14
ρ1522-2-2000020ζ7473ζ767ζ7572ζ767ζ7572ζ74737473757274737677572767ζ7572ζ7473ζ767    orthogonal lifted from D14
ρ16222-20000-20ζ7572ζ7473ζ767ζ7473ζ767ζ7572ζ7572ζ76775727473767ζ747376775727473    orthogonal lifted from D14
ρ17222-20000-20ζ7473ζ767ζ7572ζ767ζ7572ζ7473ζ7473ζ757274737677572ζ76775727473767    orthogonal lifted from D14
ρ182222000020ζ767ζ7572ζ7473ζ7572ζ7473ζ767ζ767ζ7473ζ767ζ7572ζ7473ζ7572ζ7473ζ767ζ7572    orthogonal lifted from D7
ρ1922-220000-20ζ7473ζ767ζ7572ζ767ζ7572ζ747374737572ζ7473ζ767ζ757276775727473767    orthogonal lifted from D14
ρ2022-2-2000020ζ767ζ7572ζ7473ζ7572ζ7473ζ7677677473767757274737572ζ7473ζ767ζ7572    orthogonal lifted from D14
ρ212222000020ζ7572ζ7473ζ767ζ7473ζ767ζ7572ζ7572ζ767ζ7572ζ7473ζ767ζ7473ζ767ζ7572ζ7473    orthogonal lifted from D7
ρ2222-2-2000020ζ7572ζ7473ζ767ζ7473ζ767ζ75727572767757274737677473ζ767ζ7572ζ7473    orthogonal lifted from D14
ρ234-40000000074+2ζ7376+2ζ775+2ζ72-2ζ76-2ζ7-2ζ75-2ζ72-2ζ74-2ζ73000000000    orthogonal faithful
ρ244-40000000076+2ζ775+2ζ7274+2ζ73-2ζ75-2ζ72-2ζ74-2ζ73-2ζ76-2ζ7000000000    orthogonal faithful
ρ254-40000000075+2ζ7274+2ζ7376+2ζ7-2ζ74-2ζ73-2ζ76-2ζ7-2ζ75-2ζ72000000000    orthogonal faithful

Permutation representations of D4×D7
On 28 points - transitive group 28T18
Generators in S28
(1 20 13 27)(2 21 14 28)(3 15 8 22)(4 16 9 23)(5 17 10 24)(6 18 11 25)(7 19 12 26)
(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)

G:=sub<Sym(28)| (1,20,13,27)(2,21,14,28)(3,15,8,22)(4,16,9,23)(5,17,10,24)(6,18,11,25)(7,19,12,26), (15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)>;

G:=Group( (1,20,13,27)(2,21,14,28)(3,15,8,22)(4,16,9,23)(5,17,10,24)(6,18,11,25)(7,19,12,26), (15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27) );

G=PermutationGroup([[(1,20,13,27),(2,21,14,28),(3,15,8,22),(4,16,9,23),(5,17,10,24),(6,18,11,25),(7,19,12,26)], [(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27)]])

G:=TransitiveGroup(28,18);

D4×D7 is a maximal subgroup of
D8⋊D7  D56⋊C2  D46D14  D48D14  C28⋊D6  D6⋊D14
D4×D7 is a maximal quotient of
C22⋊Dic14  Dic74D4  C22⋊D28  D14.D4  D14⋊D4  Dic7.D4  C28⋊Q8  D28⋊C4  D14.5D4  C4⋊D28  D14⋊Q8  D8⋊D7  D83D7  D56⋊C2  SD16⋊D7  SD163D7  Q16⋊D7  Q8.D14  C23⋊D14  C282D4  Dic7⋊D4  C28⋊D4  C28⋊D6  D6⋊D14

Matrix representation of D4×D7 in GL4(𝔽29) generated by

1000
0100
002817
0051
,
1000
0100
0010
002428
,
22100
272500
0010
0001
,
252800
15400
00280
00028
G:=sub<GL(4,GF(29))| [1,0,0,0,0,1,0,0,0,0,28,5,0,0,17,1],[1,0,0,0,0,1,0,0,0,0,1,24,0,0,0,28],[22,27,0,0,1,25,0,0,0,0,1,0,0,0,0,1],[25,15,0,0,28,4,0,0,0,0,28,0,0,0,0,28] >;

D4×D7 in GAP, Magma, Sage, TeX

D_4\times D_7
% in TeX

G:=Group("D4xD7");
// GroupNames label

G:=SmallGroup(112,31);
// by ID

G=gap.SmallGroup(112,31);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-7,97,2404]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^7=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of D4×D7 in TeX

׿
×
𝔽