Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C14

Direct product G=N×Q with N=C4 and Q=C2×C14
dρLabelID
C22×C28112C2^2xC28112,37

Semidirect products G=N:Q with N=C4 and Q=C2×C14
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×C14) = D4×C14φ: C2×C14/C14C2 ⊆ Aut C456C4:(C2xC14)112,38

Non-split extensions G=N.Q with N=C4 and Q=C2×C14
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C14) = C7×D8φ: C2×C14/C14C2 ⊆ Aut C4562C4.1(C2xC14)112,24
C4.2(C2×C14) = C7×SD16φ: C2×C14/C14C2 ⊆ Aut C4562C4.2(C2xC14)112,25
C4.3(C2×C14) = C7×Q16φ: C2×C14/C14C2 ⊆ Aut C41122C4.3(C2xC14)112,26
C4.4(C2×C14) = Q8×C14φ: C2×C14/C14C2 ⊆ Aut C4112C4.4(C2xC14)112,39
C4.5(C2×C14) = C7×C4○D4φ: C2×C14/C14C2 ⊆ Aut C4562C4.5(C2xC14)112,40
C4.6(C2×C14) = C7×M4(2)central extension (φ=1)562C4.6(C2xC14)112,23

׿
×
𝔽