direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary
Aliases: C7×M4(2), C4.C28, C56⋊7C2, C8⋊3C14, C28.4C4, C22.C28, C28.22C22, C2.3(C2×C28), (C2×C28).8C2, (C2×C14).1C4, (C2×C4).2C14, C4.6(C2×C14), C14.12(C2×C4), SmallGroup(112,23)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7×M4(2)
G = < a,b,c | a7=b8=c2=1, ab=ba, ac=ca, cbc=b5 >
(1 26 19 51 14 43 39)(2 27 20 52 15 44 40)(3 28 21 53 16 45 33)(4 29 22 54 9 46 34)(5 30 23 55 10 47 35)(6 31 24 56 11 48 36)(7 32 17 49 12 41 37)(8 25 18 50 13 42 38)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(25 29)(27 31)(34 38)(36 40)(42 46)(44 48)(50 54)(52 56)
G:=sub<Sym(56)| (1,26,19,51,14,43,39)(2,27,20,52,15,44,40)(3,28,21,53,16,45,33)(4,29,22,54,9,46,34)(5,30,23,55,10,47,35)(6,31,24,56,11,48,36)(7,32,17,49,12,41,37)(8,25,18,50,13,42,38), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)>;
G:=Group( (1,26,19,51,14,43,39)(2,27,20,52,15,44,40)(3,28,21,53,16,45,33)(4,29,22,54,9,46,34)(5,30,23,55,10,47,35)(6,31,24,56,11,48,36)(7,32,17,49,12,41,37)(8,25,18,50,13,42,38), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56) );
G=PermutationGroup([[(1,26,19,51,14,43,39),(2,27,20,52,15,44,40),(3,28,21,53,16,45,33),(4,29,22,54,9,46,34),(5,30,23,55,10,47,35),(6,31,24,56,11,48,36),(7,32,17,49,12,41,37),(8,25,18,50,13,42,38)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(25,29),(27,31),(34,38),(36,40),(42,46),(44,48),(50,54),(52,56)]])
C7×M4(2) is a maximal subgroup of
C28.53D4 C28.46D4 C4.12D28 D28⋊4C4 D28.C4 C8⋊D14 C8.D14
70 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 7A | ··· | 7F | 8A | 8B | 8C | 8D | 14A | ··· | 14F | 14G | ··· | 14L | 28A | ··· | 28L | 28M | ··· | 28R | 56A | ··· | 56X |
order | 1 | 2 | 2 | 4 | 4 | 4 | 7 | ··· | 7 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
70 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | |||||||||
image | C1 | C2 | C2 | C4 | C4 | C7 | C14 | C14 | C28 | C28 | M4(2) | C7×M4(2) |
kernel | C7×M4(2) | C56 | C2×C28 | C28 | C2×C14 | M4(2) | C8 | C2×C4 | C4 | C22 | C7 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 6 | 12 | 6 | 12 | 12 | 2 | 12 |
Matrix representation of C7×M4(2) ►in GL2(𝔽29) generated by
23 | 0 |
0 | 23 |
0 | 10 |
22 | 0 |
28 | 0 |
0 | 1 |
G:=sub<GL(2,GF(29))| [23,0,0,23],[0,22,10,0],[28,0,0,1] >;
C7×M4(2) in GAP, Magma, Sage, TeX
C_7\times M_4(2)
% in TeX
G:=Group("C7xM4(2)");
// GroupNames label
G:=SmallGroup(112,23);
// by ID
G=gap.SmallGroup(112,23);
# by ID
G:=PCGroup([5,-2,-2,-7,-2,-2,140,581,58]);
// Polycyclic
G:=Group<a,b,c|a^7=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^5>;
// generators/relations
Export