p-group, metabelian, nilpotent (class 5), monomial
Aliases: C4⋊Q8⋊1C4, C8⋊C4⋊2C4, (C2×D4).4D4, (C2×Q8).4D4, C42.4(C2×C4), C8.2D4.1C2, C42⋊3C4.1C2, C2.7(C42⋊C4), C42.C4.1C2, C4.4D4.4C22, C22.17(C23⋊C4), (C2×C4).33(C22⋊C4), SmallGroup(128,139)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×D4).D4
G = < a,b,c,d,e | a2=b4=c2=1, d4=b2, e2=c, ebe-1=ab=ba, ac=ca, dad-1=eae-1=ab2, cbc=b-1, dbd-1=ab-1, dcd-1=ab-1c, ce=ec, ede-1=cd3 >
Character table of (C2×D4).D4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 2 | 8 | 4 | 8 | 8 | 16 | 16 | 16 | 8 | 8 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -i | i | -1 | 1 | 1 | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -i | i | 1 | -1 | -1 | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | i | -i | 1 | -1 | -1 | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | i | -i | -1 | 1 | 1 | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ12 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from C42⋊C4 |
ρ13 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | orthogonal lifted from C42⋊C4 |
ρ14 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 23)(2 20)(3 17)(4 22)(5 19)(6 24)(7 21)(8 18)(9 31)(10 28)(11 25)(12 30)(13 27)(14 32)(15 29)(16 26)
(1 31 5 27)(2 14 6 10)(3 29 7 25)(4 12 8 16)(9 19 13 23)(11 17 15 21)(18 26 22 30)(20 32 24 28)
(2 10)(3 21)(4 26)(6 14)(7 17)(8 30)(9 13)(11 25)(12 18)(15 29)(16 22)(20 28)(24 32)(27 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 26 10 4)(3 15 21 29)(6 30 14 8)(7 11 17 25)(9 31 13 27)(12 28 18 20)(16 32 22 24)(19 23)
G:=sub<Sym(32)| (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,31)(10,28)(11,25)(12,30)(13,27)(14,32)(15,29)(16,26), (1,31,5,27)(2,14,6,10)(3,29,7,25)(4,12,8,16)(9,19,13,23)(11,17,15,21)(18,26,22,30)(20,32,24,28), (2,10)(3,21)(4,26)(6,14)(7,17)(8,30)(9,13)(11,25)(12,18)(15,29)(16,22)(20,28)(24,32)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,26,10,4)(3,15,21,29)(6,30,14,8)(7,11,17,25)(9,31,13,27)(12,28,18,20)(16,32,22,24)(19,23)>;
G:=Group( (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,31)(10,28)(11,25)(12,30)(13,27)(14,32)(15,29)(16,26), (1,31,5,27)(2,14,6,10)(3,29,7,25)(4,12,8,16)(9,19,13,23)(11,17,15,21)(18,26,22,30)(20,32,24,28), (2,10)(3,21)(4,26)(6,14)(7,17)(8,30)(9,13)(11,25)(12,18)(15,29)(16,22)(20,28)(24,32)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,26,10,4)(3,15,21,29)(6,30,14,8)(7,11,17,25)(9,31,13,27)(12,28,18,20)(16,32,22,24)(19,23) );
G=PermutationGroup([[(1,23),(2,20),(3,17),(4,22),(5,19),(6,24),(7,21),(8,18),(9,31),(10,28),(11,25),(12,30),(13,27),(14,32),(15,29),(16,26)], [(1,31,5,27),(2,14,6,10),(3,29,7,25),(4,12,8,16),(9,19,13,23),(11,17,15,21),(18,26,22,30),(20,32,24,28)], [(2,10),(3,21),(4,26),(6,14),(7,17),(8,30),(9,13),(11,25),(12,18),(15,29),(16,22),(20,28),(24,32),(27,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,26,10,4),(3,15,21,29),(6,30,14,8),(7,11,17,25),(9,31,13,27),(12,28,18,20),(16,32,22,24),(19,23)]])
Matrix representation of (C2×D4).D4 ►in GL8(𝔽17)
1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 15 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 16 | 0 | 16 | 0 | 1 | 0 | 1 |
0 | 16 | 0 | 16 | 0 | 1 | 1 | 0 |
0 | 0 | 16 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 16 | 0 | 1 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 1 |
1 | 16 | 0 | 1 | 16 | 1 | 0 | 16 |
1 | 16 | 0 | 1 | 16 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 1 | 16 | 0 | 1 |
0 | 0 | 16 | 0 | 1 | 16 | 1 | 0 |
7 | 16 | 7 | 16 | 11 | 16 | 1 | 10 |
7 | 13 | 7 | 13 | 11 | 3 | 14 | 14 |
10 | 7 | 1 | 10 | 0 | 16 | 16 | 7 |
10 | 4 | 1 | 13 | 0 | 3 | 3 | 3 |
16 | 1 | 16 | 10 | 8 | 16 | 7 | 1 |
16 | 14 | 16 | 14 | 8 | 13 | 4 | 4 |
0 | 3 | 1 | 3 | 10 | 3 | 14 | 3 |
1 | 6 | 8 | 0 | 10 | 16 | 10 | 16 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 16 | 0 | 0 | 15 |
1 | 0 | 1 | 0 | 16 | 0 | 16 | 16 |
0 | 0 | 16 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 16 | 1 | 1 | 16 | 0 | 1 |
G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,15,16,0,0,0,0,16,16,0,0,1,0,0,0,0,0,0,0,15,16,0,0,16,16,0,0,0,0,1,0,0,0,0,0,0,0,15,16,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,0,1,0,16,0,1,1,0,0,15,16,0,0,16,16,16,0,0,0,16,0,0,0,2,1,0,0,0,0,1,1,0,0,0,0,1,0,16,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,2,1,16,16],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,16,16,0,0,0,16,0,0,0,0,0,0,0,0,16,0,1,1,0,0,0,0,2,1,16,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[7,7,10,10,16,16,0,1,16,13,7,4,1,14,3,6,7,7,1,1,16,16,1,8,16,13,10,13,10,14,3,0,11,11,0,0,8,8,10,10,16,3,16,3,16,13,3,16,1,14,16,3,7,4,14,10,10,14,7,3,1,4,3,16],[1,1,0,0,1,1,0,0,0,16,0,0,0,0,0,0,0,0,16,16,1,1,16,16,0,0,2,1,0,0,1,1,0,0,0,0,16,16,0,1,0,0,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,15,16,1,1] >;
(C2×D4).D4 in GAP, Magma, Sage, TeX
(C_2\times D_4).D_4
% in TeX
G:=Group("(C2xD4).D4");
// GroupNames label
G:=SmallGroup(128,139);
// by ID
G=gap.SmallGroup(128,139);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,456,422,387,184,1690,745,1684,1411,375,172,4037]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^4=b^2,e^2=c,e*b*e^-1=a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a*b^2,c*b*c=b^-1,d*b*d^-1=a*b^-1,d*c*d^-1=a*b^-1*c,c*e=e*c,e*d*e^-1=c*d^3>;
// generators/relations
Export
Subgroup lattice of (C2×D4).D4 in TeX
Character table of (C2×D4).D4 in TeX