extension | φ:Q→Out N | d | ρ | Label | ID |
C4⋊Q8⋊1C4 = (C2×D4).D4 | φ: C4/C1 → C4 ⊆ Out C4⋊Q8 | 32 | 8- | C4:Q8:1C4 | 128,139 |
C4⋊Q8⋊2C4 = (C4×C8)⋊6C4 | φ: C4/C1 → C4 ⊆ Out C4⋊Q8 | 16 | 4 | C4:Q8:2C4 | 128,141 |
C4⋊Q8⋊3C4 = C4.(C4×D4) | φ: C4/C1 → C4 ⊆ Out C4⋊Q8 | 32 | 8- | C4:Q8:3C4 | 128,641 |
C4⋊Q8⋊4C4 = C42.7D4 | φ: C4/C1 → C4 ⊆ Out C4⋊Q8 | 32 | 8- | C4:Q8:4C4 | 128,644 |
C4⋊Q8⋊5C4 = C4⋊Q8⋊C4 | φ: C4/C1 → C4 ⊆ Out C4⋊Q8 | 32 | 8- | C4:Q8:5C4 | 128,861 |
C4⋊Q8⋊6C4 = C42.403D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:6C4 | 128,234 |
C4⋊Q8⋊7C4 = C42.404D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:7C4 | 128,235 |
C4⋊Q8⋊8C4 = C42.55D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:8C4 | 128,237 |
C4⋊Q8⋊9C4 = C42.56D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:9C4 | 128,238 |
C4⋊Q8⋊10C4 = C42.59D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:10C4 | 128,246 |
C4⋊Q8⋊11C4 = C42.60D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:11C4 | 128,247 |
C4⋊Q8⋊12C4 = C42.61D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:12C4 | 128,249 |
C4⋊Q8⋊13C4 = C42.62D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:13C4 | 128,250 |
C4⋊Q8⋊14C4 = M4(2)⋊19D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 16 | 4 | C4:Q8:14C4 | 128,616 |
C4⋊Q8⋊15C4 = C4⋊Q8⋊15C4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:15C4 | 128,618 |
C4⋊Q8⋊16C4 = C42.431D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:16C4 | 128,688 |
C4⋊Q8⋊17C4 = C42.111D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:17C4 | 128,692 |
C4⋊Q8⋊18C4 = C43⋊C2 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:18C4 | 128,694 |
C4⋊Q8⋊19C4 = C42⋊8D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:19C4 | 128,695 |
C4⋊Q8⋊20C4 = M4(2)⋊13D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:20C4 | 128,712 |
C4⋊Q8⋊21C4 = C42.117D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:21C4 | 128,713 |
C4⋊Q8⋊22C4 = M4(2)⋊7Q8 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:22C4 | 128,718 |
C4⋊Q8⋊23C4 = C42.121D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:23C4 | 128,719 |
C4⋊Q8⋊24C4 = C42.122D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:24C4 | 128,720 |
C4⋊Q8⋊25C4 = C42.436D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:25C4 | 128,722 |
C4⋊Q8⋊26C4 = C42.125D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:26C4 | 128,725 |
C4⋊Q8⋊27C4 = C42⋊16Q8 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:27C4 | 128,726 |
C4⋊Q8⋊28C4 = C42⋊Q8 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8:28C4 | 128,727 |
C4⋊Q8⋊29C4 = C4⋊Q8⋊29C4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 16 | 4 | C4:Q8:29C4 | 128,858 |
C4⋊Q8⋊30C4 = C42.161D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:30C4 | 128,1059 |
C4⋊Q8⋊31C4 = C42⋊4Q8 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:31C4 | 128,1063 |
C4⋊Q8⋊32C4 = C23.247C24 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:32C4 | 128,1097 |
C4⋊Q8⋊33C4 = C23.251C24 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:33C4 | 128,1101 |
C4⋊Q8⋊34C4 = C23.263C24 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8:34C4 | 128,1113 |
extension | φ:Q→Out N | d | ρ | Label | ID |
C4⋊Q8.1C4 = C42.(C2×C4) | φ: C4/C1 → C4 ⊆ Out C4⋊Q8 | 32 | 8- | C4:Q8.1C4 | 128,88 |
C4⋊Q8.2C4 = C8.25D8 | φ: C4/C1 → C4 ⊆ Out C4⋊Q8 | 32 | 4- | C4:Q8.2C4 | 128,90 |
C4⋊Q8.3C4 = C8.29D8 | φ: C4/C1 → C4 ⊆ Out C4⋊Q8 | 16 | 4 | C4:Q8.3C4 | 128,91 |
C4⋊Q8.4C4 = (C2×Q8).D4 | φ: C4/C1 → C4 ⊆ Out C4⋊Q8 | 32 | 4- | C4:Q8.4C4 | 128,143 |
C4⋊Q8.5C4 = C4⋊Q8.C4 | φ: C4/C1 → C4 ⊆ Out C4⋊Q8 | 32 | 8- | C4:Q8.5C4 | 128,865 |
C4⋊Q8.6C4 = C42.45D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.6C4 | 128,212 |
C4⋊Q8.7C4 = C42.46D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.7C4 | 128,213 |
C4⋊Q8.8C4 = C42.400D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.8C4 | 128,216 |
C4⋊Q8.9C4 = C42.401D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.9C4 | 128,217 |
C4⋊Q8.10C4 = C42.315D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.10C4 | 128,224 |
C4⋊Q8.11C4 = C42.316D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.11C4 | 128,225 |
C4⋊Q8.12C4 = C42.53D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.12C4 | 128,228 |
C4⋊Q8.13C4 = C42.54D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.13C4 | 128,229 |
C4⋊Q8.14C4 = C42.405D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.14C4 | 128,257 |
C4⋊Q8.15C4 = C42.406D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.15C4 | 128,258 |
C4⋊Q8.16C4 = C42.67D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.16C4 | 128,262 |
C4⋊Q8.17C4 = C42.68D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.17C4 | 128,263 |
C4⋊Q8.18C4 = C42.73D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.18C4 | 128,268 |
C4⋊Q8.19C4 = C42.74D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.19C4 | 128,269 |
C4⋊Q8.20C4 = C2×C4.10D8 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8.20C4 | 128,271 |
C4⋊Q8.21C4 = C2×C4.6Q16 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 128 | | C4:Q8.21C4 | 128,273 |
C4⋊Q8.22C4 = C42.414D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.22C4 | 128,278 |
C4⋊Q8.23C4 = C42.415D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.23C4 | 128,280 |
C4⋊Q8.24C4 = C42.416D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.24C4 | 128,281 |
C4⋊Q8.25C4 = C42.83D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.25C4 | 128,288 |
C4⋊Q8.26C4 = C42.85D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.26C4 | 128,290 |
C4⋊Q8.27C4 = C2×C42.3C4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 32 | | C4:Q8.27C4 | 128,863 |
C4⋊Q8.28C4 = C42.266C23 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.28C4 | 128,1664 |
C4⋊Q8.29C4 = M4(2)⋊23D4 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.29C4 | 128,1667 |
C4⋊Q8.30C4 = C42.287C23 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.30C4 | 128,1693 |
C4⋊Q8.31C4 = M4(2)⋊9Q8 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.31C4 | 128,1694 |
C4⋊Q8.32C4 = C42.694C23 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.32C4 | 128,1711 |
C4⋊Q8.33C4 = C42.300C23 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.33C4 | 128,1712 |
C4⋊Q8.34C4 = C42.301C23 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.34C4 | 128,1713 |
C4⋊Q8.35C4 = C42.696C23 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.35C4 | 128,1717 |
C4⋊Q8.36C4 = C42.304C23 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.36C4 | 128,1718 |
C4⋊Q8.37C4 = C42.305C23 | φ: C4/C2 → C2 ⊆ Out C4⋊Q8 | 64 | | C4:Q8.37C4 | 128,1719 |
C4⋊Q8.38C4 = C42.681C23 | φ: trivial image | 64 | | C4:Q8.38C4 | 128,1663 |
C4⋊Q8.39C4 = C42.286C23 | φ: trivial image | 64 | | C4:Q8.39C4 | 128,1692 |