p-group, metabelian, nilpotent (class 5), monomial
Aliases: (C4×C8).6C4, (C2×Q8).5D4, C4⋊1D4.4C4, C8⋊5D4.7C2, C4⋊Q8.2C22, C42.17(C2×C4), C42.3C4⋊5C2, C2.10(C42⋊C4), C22.20(C23⋊C4), (C2×C4).36(C22⋊C4), SmallGroup(128,142)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C22 — C2×C4 — C2×Q8 — C4⋊Q8 — C8⋊5D4 — (C4×C8).C4 |
C1 — C2 — C22 — C2×C4 — C4⋊Q8 — (C4×C8).C4 |
Generators and relations for (C4×C8).C4
G = < a,b,c | a4=b8=1, c4=b4, ab=ba, cac-1=ab2, cbc-1=ab3 >
Character table of (C4×C8).C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 2 | 16 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C42⋊C4 |
ρ12 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from C42⋊C4 |
ρ13 | 4 | 4 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ14 | 4 | -4 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ15 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | complex faithful |
ρ16 | 4 | -4 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | complex faithful |
ρ17 | 4 | -4 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(9 15 13 11)(10 16 14 12)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 10 2 13 5 14 6 9)(3 16 8 15 7 12 4 11)
G:=sub<Sym(16)| (9,15,13,11)(10,16,14,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,10,2,13,5,14,6,9)(3,16,8,15,7,12,4,11)>;
G:=Group( (9,15,13,11)(10,16,14,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,10,2,13,5,14,6,9)(3,16,8,15,7,12,4,11) );
G=PermutationGroup([[(9,15,13,11),(10,16,14,12)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,10,2,13,5,14,6,9),(3,16,8,15,7,12,4,11)]])
G:=TransitiveGroup(16,378);
Matrix representation of (C4×C8).C4 ►in GL4(𝔽3) generated by
2 | 0 | 0 | 2 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
2 | 0 | 0 | 1 |
0 | 0 | 0 | 2 |
0 | 1 | 1 | 0 |
0 | 2 | 1 | 0 |
2 | 0 | 0 | 2 |
0 | 0 | 2 | 0 |
1 | 0 | 0 | 2 |
0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 |
G:=sub<GL(4,GF(3))| [2,0,0,2,0,1,0,0,0,0,1,0,2,0,0,1],[0,0,0,2,0,1,2,0,0,1,1,0,2,0,0,2],[0,1,0,0,0,0,0,1,2,0,0,1,0,2,1,0] >;
(C4×C8).C4 in GAP, Magma, Sage, TeX
(C_4\times C_8).C_4
% in TeX
G:=Group("(C4xC8).C4");
// GroupNames label
G:=SmallGroup(128,142);
// by ID
G=gap.SmallGroup(128,142);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,422,1059,520,794,745,248,1684,1411,375,172,4037]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=1,c^4=b^4,a*b=b*a,c*a*c^-1=a*b^2,c*b*c^-1=a*b^3>;
// generators/relations
Export
Subgroup lattice of (C4×C8).C4 in TeX
Character table of (C4×C8).C4 in TeX