p-group, metabelian, nilpotent (class 5), monomial
Aliases: (C4×C8)⋊6C4, C4⋊Q8⋊2C4, (C2×D4).6D4, C8⋊5D4.6C2, C42.16(C2×C4), C42⋊C4.1C2, C4⋊1D4.3C22, C2.9(C42⋊C4), C22.19(C23⋊C4), (C2×C4).35(C22⋊C4), SmallGroup(128,141)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C22 — C2×C4 — C2×D4 — C4⋊1D4 — C8⋊5D4 — (C4×C8)⋊6C4 |
C1 — C2 — C22 — C2×C4 — C4⋊1D4 — (C4×C8)⋊6C4 |
Generators and relations for (C4×C8)⋊6C4
G = < a,b,c | a4=b8=c4=1, ab=ba, cac-1=ab2, cbc-1=ab3 >
Character table of (C4×C8)⋊6C4
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 2 | 8 | 8 | 4 | 4 | 4 | 16 | 16 | 16 | 16 | 16 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | -1 | i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | 1 | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | 1 | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -1 | -i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | orthogonal lifted from C42⋊C4 |
ρ12 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | orthogonal lifted from C42⋊C4 |
ρ13 | 4 | 4 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ14 | 4 | -4 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 0 | -2√-2 | 0 | complex faithful |
ρ15 | 4 | -4 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 0 | 2√-2 | 0 | complex faithful |
ρ16 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 0 | 2√-2 | complex faithful |
ρ17 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 0 | -2√-2 | complex faithful |
(1 5)(2 6)(3 7)(4 8)(9 11 13 15)(10 12 14 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 11)(2 10 4 16)(3 9 7 13)(5 15)(6 14 8 12)
G:=sub<Sym(16)| (1,5)(2,6)(3,7)(4,8)(9,11,13,15)(10,12,14,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,11)(2,10,4,16)(3,9,7,13)(5,15)(6,14,8,12)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,11,13,15)(10,12,14,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,11)(2,10,4,16)(3,9,7,13)(5,15)(6,14,8,12) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,11,13,15),(10,12,14,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,11),(2,10,4,16),(3,9,7,13),(5,15),(6,14,8,12)]])
G:=TransitiveGroup(16,363);
Matrix representation of (C4×C8)⋊6C4 ►in GL4(𝔽3) generated by
1 | 0 | 2 | 0 |
1 | 0 | 1 | 2 |
0 | 2 | 2 | 1 |
2 | 1 | 2 | 1 |
0 | 2 | 0 | 2 |
0 | 2 | 2 | 0 |
0 | 0 | 0 | 2 |
1 | 1 | 0 | 1 |
1 | 0 | 2 | 1 |
0 | 0 | 2 | 1 |
0 | 0 | 0 | 1 |
0 | 1 | 1 | 2 |
G:=sub<GL(4,GF(3))| [1,1,0,2,0,0,2,1,2,1,2,2,0,2,1,1],[0,0,0,1,2,2,0,1,0,2,0,0,2,0,2,1],[1,0,0,0,0,0,0,1,2,2,0,1,1,1,1,2] >;
(C4×C8)⋊6C4 in GAP, Magma, Sage, TeX
(C_4\times C_8)\rtimes_6C_4
% in TeX
G:=Group("(C4xC8):6C4");
// GroupNames label
G:=SmallGroup(128,141);
// by ID
G=gap.SmallGroup(128,141);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,456,422,1059,520,794,745,1684,1411,375,172,4037]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=c^4=1,a*b=b*a,c*a*c^-1=a*b^2,c*b*c^-1=a*b^3>;
// generators/relations
Export
Subgroup lattice of (C4×C8)⋊6C4 in TeX
Character table of (C4×C8)⋊6C4 in TeX