Copied to
clipboard

G = (C4×C8)⋊C4order 128 = 27

3rd semidirect product of C4×C8 and C4 acting faithfully

p-group, metabelian, nilpotent (class 5), monomial

Aliases: (C4×C8)⋊3C4, (C2×D4).8D4, (C2×Q8).8D4, C42.C22C4, C42.19(C2×C4), C423C4.2C2, C2.8(C423C4), C42.C4.2C2, C4.4D4.5C22, C22.24(C23⋊C4), C42.78C22.1C2, (C2×C4).40(C22⋊C4), SmallGroup(128,146)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — (C4×C8)⋊C4
C1C2C22C2×C4C2×D4C4.4D4C42.78C22 — (C4×C8)⋊C4
C1C2C22C2×C4C42 — (C4×C8)⋊C4
C1C2C22C2×C4C4.4D4 — (C4×C8)⋊C4
C1C2C2C22C2×C4C4.4D4 — (C4×C8)⋊C4

Generators and relations for (C4×C8)⋊C4
 G = < a,b,c | a4=b8=c4=1, ab=ba, cac-1=a-1b2, cbc-1=a-1b-1 >

2C2
8C2
2C4
4C22
4C4
4C4
8C4
8C22
16C4
2C23
2C2×C4
2C2×C4
4D4
4C8
4C2×C4
4Q8
8C8
8C2×C4
2C4⋊C4
2C2×C8
4C4⋊C4
4M4(2)
4C22⋊C4
4C22⋊C4
2C4.10D4
2Q8⋊C4
2D4⋊C4
2C23⋊C4

Character table of (C4×C8)⋊C4

 class 12A2B2C4A4B4C4D4E4F4G8A8B8C8D8E8F
 size 1128444816161644441616
ρ111111111111111111    trivial
ρ211111111-11-11111-1-1    linear of order 2
ρ311111111-1-1-1-1-1-1-111    linear of order 2
ρ4111111111-11-1-1-1-1-1-1    linear of order 2
ρ5111-1111-1-i1i-1-1-1-1-ii    linear of order 4
ρ6111-1111-1i-1-i1111-ii    linear of order 4
ρ7111-1111-1-i-1i1111i-i    linear of order 4
ρ8111-1111-1i1-i-1-1-1-1i-i    linear of order 4
ρ9222-2-22-22000000000    orthogonal lifted from D4
ρ102222-22-2-2000000000    orthogonal lifted from D4
ρ1144400-400000000000    orthogonal lifted from C23⋊C4
ρ1244-4000000002i2i-2i-2i00    complex lifted from C423C4
ρ1344-400000000-2i-2i2i2i00    complex lifted from C423C4
ρ144-4002i0-2i0000885838700    complex faithful
ρ154-4002i0-2i0000858878300    complex faithful
ρ164-400-2i02i0000838788500    complex faithful
ρ174-400-2i02i0000878385800    complex faithful

Smallest permutation representation of (C4×C8)⋊C4
On 32 points
Generators in S32
(1 12 27 20)(2 13 28 21)(3 14 29 22)(4 15 30 23)(5 16 31 24)(6 9 32 17)(7 10 25 18)(8 11 26 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 17 26 19)(3 29 7 25)(4 11 32 9)(6 21 30 23)(8 15 28 13)(10 20 18 16)(12 14 24 22)(27 31)

G:=sub<Sym(32)| (1,12,27,20)(2,13,28,21)(3,14,29,22)(4,15,30,23)(5,16,31,24)(6,9,32,17)(7,10,25,18)(8,11,26,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,17,26,19)(3,29,7,25)(4,11,32,9)(6,21,30,23)(8,15,28,13)(10,20,18,16)(12,14,24,22)(27,31)>;

G:=Group( (1,12,27,20)(2,13,28,21)(3,14,29,22)(4,15,30,23)(5,16,31,24)(6,9,32,17)(7,10,25,18)(8,11,26,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,17,26,19)(3,29,7,25)(4,11,32,9)(6,21,30,23)(8,15,28,13)(10,20,18,16)(12,14,24,22)(27,31) );

G=PermutationGroup([[(1,12,27,20),(2,13,28,21),(3,14,29,22),(4,15,30,23),(5,16,31,24),(6,9,32,17),(7,10,25,18),(8,11,26,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,17,26,19),(3,29,7,25),(4,11,32,9),(6,21,30,23),(8,15,28,13),(10,20,18,16),(12,14,24,22),(27,31)]])

Matrix representation of (C4×C8)⋊C4 in GL4(𝔽17) generated by

2151515
1521515
22215
22152
,
131113
113131
164131
416113
,
1000
01600
00016
0010
G:=sub<GL(4,GF(17))| [2,15,2,2,15,2,2,2,15,15,2,15,15,15,15,2],[13,1,16,4,1,13,4,16,1,13,13,1,13,1,1,13],[1,0,0,0,0,16,0,0,0,0,0,1,0,0,16,0] >;

(C4×C8)⋊C4 in GAP, Magma, Sage, TeX

(C_4\times C_8)\rtimes C_4
% in TeX

G:=Group("(C4xC8):C4");
// GroupNames label

G:=SmallGroup(128,146);
// by ID

G=gap.SmallGroup(128,146);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,232,422,1059,184,1690,745,1684,1411,375,172,4037]);
// Polycyclic

G:=Group<a,b,c|a^4=b^8=c^4=1,a*b=b*a,c*a*c^-1=a^-1*b^2,c*b*c^-1=a^-1*b^-1>;
// generators/relations

Export

Subgroup lattice of (C4×C8)⋊C4 in TeX
Character table of (C4×C8)⋊C4 in TeX

׿
×
𝔽