Copied to
clipboard

G = D162C4order 128 = 27

1st semidirect product of D16 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 5), monomial

Aliases: D162C4, C2.1D32, C16.15D4, C4.1SD32, C2.1SD64, C8.15SD16, C22.8D16, (C2×C32)⋊3C2, C163C41C2, (C2×C4).65D8, C16.10(C2×C4), (C2×D16).1C2, (C2×C8).237D4, C2.6(C2.D16), C8.13(C22⋊C4), (C2×C16).75C22, C4.13(D4⋊C4), SmallGroup(128,147)

Series: Derived Chief Lower central Upper central Jennings

C1C16 — D162C4
C1C2C4C8C2×C8C2×C16C2×D16 — D162C4
C1C2C4C8C16 — D162C4
C1C22C2×C4C2×C8C2×C16 — D162C4
C1C2C2C2C2C2C2C2C2C4C4C4C4C8C8C2×C16 — D162C4

Generators and relations for D162C4
 G = < a,b,c | a16=b2=c4=1, bab=cac-1=a-1, cbc-1=a13b >

16C2
16C2
8C22
8C22
16C22
16C22
16C4
4D4
4D4
8D4
8C2×C4
8C23
2D8
2D8
4C2×D4
4C4⋊C4
4D8
2C32
2C2×D8
2D16
2C2.D8

Smallest permutation representation of D162C4
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 64)(17 42)(18 41)(19 40)(20 39)(21 38)(22 37)(23 36)(24 35)(25 34)(26 33)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)
(1 30 64 47)(2 29 49 46)(3 28 50 45)(4 27 51 44)(5 26 52 43)(6 25 53 42)(7 24 54 41)(8 23 55 40)(9 22 56 39)(10 21 57 38)(11 20 58 37)(12 19 59 36)(13 18 60 35)(14 17 61 34)(15 32 62 33)(16 31 63 48)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,64)(17,42)(18,41)(19,40)(20,39)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43), (1,30,64,47)(2,29,49,46)(3,28,50,45)(4,27,51,44)(5,26,52,43)(6,25,53,42)(7,24,54,41)(8,23,55,40)(9,22,56,39)(10,21,57,38)(11,20,58,37)(12,19,59,36)(13,18,60,35)(14,17,61,34)(15,32,62,33)(16,31,63,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,64)(17,42)(18,41)(19,40)(20,39)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43), (1,30,64,47)(2,29,49,46)(3,28,50,45)(4,27,51,44)(5,26,52,43)(6,25,53,42)(7,24,54,41)(8,23,55,40)(9,22,56,39)(10,21,57,38)(11,20,58,37)(12,19,59,36)(13,18,60,35)(14,17,61,34)(15,32,62,33)(16,31,63,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,64),(17,42),(18,41),(19,40),(20,39),(21,38),(22,37),(23,36),(24,35),(25,34),(26,33),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43)], [(1,30,64,47),(2,29,49,46),(3,28,50,45),(4,27,51,44),(5,26,52,43),(6,25,53,42),(7,24,54,41),(8,23,55,40),(9,22,56,39),(10,21,57,38),(11,20,58,37),(12,19,59,36),(13,18,60,35),(14,17,61,34),(15,32,62,33),(16,31,63,48)]])

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D8A8B8C8D16A···16H32A···32P
order1222224444888816···1632···32
size1111161622161622222···22···2

38 irreducible representations

dim1111122222222
type+++++++++
imageC1C2C2C2C4D4D4SD16D8SD32D16D32SD64
kernelD162C4C163C4C2×C32C2×D16D16C16C2×C8C8C2×C4C4C22C2C2
# reps1111411224488

Matrix representation of D162C4 in GL4(𝔽97) generated by

19500
19600
006952
007124
,
96200
0100
006952
009528
,
01700
57000
006743
004030
G:=sub<GL(4,GF(97))| [1,1,0,0,95,96,0,0,0,0,69,71,0,0,52,24],[96,0,0,0,2,1,0,0,0,0,69,95,0,0,52,28],[0,57,0,0,17,0,0,0,0,0,67,40,0,0,43,30] >;

D162C4 in GAP, Magma, Sage, TeX

D_{16}\rtimes_2C_4
% in TeX

G:=Group("D16:2C4");
// GroupNames label

G:=SmallGroup(128,147);
// by ID

G=gap.SmallGroup(128,147);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,422,219,268,1684,851,242,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c|a^16=b^2=c^4=1,b*a*b=c*a*c^-1=a^-1,c*b*c^-1=a^13*b>;
// generators/relations

Export

Subgroup lattice of D162C4 in TeX

׿
×
𝔽