Copied to
clipboard

G = C164C8order 128 = 27

2nd semidirect product of C16 and C8 acting via C8/C4=C2

p-group, metacyclic, nilpotent (class 4), monomial

Aliases: C164C8, C4.16SD32, C42.312D4, C8.15M4(2), C4.6(C4⋊C8), C8.15(C2×C8), (C2×C8).37Q8, C81C8.6C2, (C4×C16).13C2, (C2×C16).15C4, (C2×C4).161D8, (C2×C4).28Q16, C2.4(C81C8), C2.1(C164C4), C4.4(C8.C4), (C4×C8).387C22, C2.2(C8.4Q8), C22.17(C2.D8), (C2×C8).217(C2×C4), (C2×C4).102(C4⋊C4), SmallGroup(128,104)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C164C8
C1C2C22C2×C4C42C4×C8C4×C16 — C164C8
C1C2C4C8 — C164C8
C1C2×C4C42C4×C8 — C164C8
C1C2C2C2C2C2×C4C2×C4C4×C8 — C164C8

Generators and relations for C164C8
 G = < a,b | a16=b8=1, bab-1=a7 >

2C4
2C8
8C8
8C8
2C16
4C2×C8
4C2×C8
2C4⋊C8
2C4⋊C8

Smallest permutation representation of C164C8
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 88 35 17 61 118 72 97)(2 95 36 24 62 125 73 104)(3 86 37 31 63 116 74 111)(4 93 38 22 64 123 75 102)(5 84 39 29 49 114 76 109)(6 91 40 20 50 121 77 100)(7 82 41 27 51 128 78 107)(8 89 42 18 52 119 79 98)(9 96 43 25 53 126 80 105)(10 87 44 32 54 117 65 112)(11 94 45 23 55 124 66 103)(12 85 46 30 56 115 67 110)(13 92 47 21 57 122 68 101)(14 83 48 28 58 113 69 108)(15 90 33 19 59 120 70 99)(16 81 34 26 60 127 71 106)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,88,35,17,61,118,72,97)(2,95,36,24,62,125,73,104)(3,86,37,31,63,116,74,111)(4,93,38,22,64,123,75,102)(5,84,39,29,49,114,76,109)(6,91,40,20,50,121,77,100)(7,82,41,27,51,128,78,107)(8,89,42,18,52,119,79,98)(9,96,43,25,53,126,80,105)(10,87,44,32,54,117,65,112)(11,94,45,23,55,124,66,103)(12,85,46,30,56,115,67,110)(13,92,47,21,57,122,68,101)(14,83,48,28,58,113,69,108)(15,90,33,19,59,120,70,99)(16,81,34,26,60,127,71,106)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,88,35,17,61,118,72,97)(2,95,36,24,62,125,73,104)(3,86,37,31,63,116,74,111)(4,93,38,22,64,123,75,102)(5,84,39,29,49,114,76,109)(6,91,40,20,50,121,77,100)(7,82,41,27,51,128,78,107)(8,89,42,18,52,119,79,98)(9,96,43,25,53,126,80,105)(10,87,44,32,54,117,65,112)(11,94,45,23,55,124,66,103)(12,85,46,30,56,115,67,110)(13,92,47,21,57,122,68,101)(14,83,48,28,58,113,69,108)(15,90,33,19,59,120,70,99)(16,81,34,26,60,127,71,106) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,88,35,17,61,118,72,97),(2,95,36,24,62,125,73,104),(3,86,37,31,63,116,74,111),(4,93,38,22,64,123,75,102),(5,84,39,29,49,114,76,109),(6,91,40,20,50,121,77,100),(7,82,41,27,51,128,78,107),(8,89,42,18,52,119,79,98),(9,96,43,25,53,126,80,105),(10,87,44,32,54,117,65,112),(11,94,45,23,55,124,66,103),(12,85,46,30,56,115,67,110),(13,92,47,21,57,122,68,101),(14,83,48,28,58,113,69,108),(15,90,33,19,59,120,70,99),(16,81,34,26,60,127,71,106)]])

44 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H8A···8H8I···8P16A···16P
order1222444444448···88···816···16
size1111111122222···28···82···2

44 irreducible representations

dim1111122222222
type++++-+-
imageC1C2C2C4C8D4Q8M4(2)D8Q16C8.C4SD32C8.4Q8
kernelC164C8C81C8C4×C16C2×C16C16C42C2×C8C8C2×C4C2×C4C4C4C2
# reps1214811222488

Matrix representation of C164C8 in GL3(𝔽17) generated by

1600
071
0167
,
200
033
0314
G:=sub<GL(3,GF(17))| [16,0,0,0,7,16,0,1,7],[2,0,0,0,3,3,0,3,14] >;

C164C8 in GAP, Magma, Sage, TeX

C_{16}\rtimes_4C_8
% in TeX

G:=Group("C16:4C8");
// GroupNames label

G:=SmallGroup(128,104);
// by ID

G=gap.SmallGroup(128,104);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,596,422,436,136,2804,172]);
// Polycyclic

G:=Group<a,b|a^16=b^8=1,b*a*b^-1=a^7>;
// generators/relations

Export

Subgroup lattice of C164C8 in TeX

׿
×
𝔽