Extensions 1→N→G→Q→1 with N=C4 and Q=SD32

Direct product G=N×Q with N=C4 and Q=SD32
dρLabelID
C4×SD3264C4xSD32128,905

Semidirect products G=N:Q with N=C4 and Q=SD32
extensionφ:Q→Aut NdρLabelID
C41SD32 = C165D4φ: SD32/C16C2 ⊆ Aut C464C4:1SD32128,980
C42SD32 = D8.4D4φ: SD32/D8C2 ⊆ Aut C464C4:2SD32128,940
C43SD32 = Q162D4φ: SD32/Q16C2 ⊆ Aut C464C4:3SD32128,939

Non-split extensions G=N.Q with N=C4 and Q=SD32
extensionφ:Q→Aut NdρLabelID
C4.1SD32 = D162C4φ: SD32/C16C2 ⊆ Aut C464C4.1SD32128,147
C4.2SD32 = Q322C4φ: SD32/C16C2 ⊆ Aut C4128C4.2SD32128,148
C4.3SD32 = C4.4D16φ: SD32/C16C2 ⊆ Aut C464C4.3SD32128,972
C4.4SD32 = C4.SD32φ: SD32/C16C2 ⊆ Aut C4128C4.4SD32128,973
C4.5SD32 = C163Q8φ: SD32/C16C2 ⊆ Aut C4128C4.5SD32128,986
C4.6SD32 = C8.27D8φ: SD32/D8C2 ⊆ Aut C4128C4.6SD32128,94
C4.7SD32 = C4.6Q32φ: SD32/D8C2 ⊆ Aut C4128C4.7SD32128,97
C4.8SD32 = D163C4φ: SD32/D8C2 ⊆ Aut C4324C4.8SD32128,150
C4.9SD32 = C8.Q16φ: SD32/D8C2 ⊆ Aut C4324C4.9SD32128,158
C4.10SD32 = D8⋊Q8φ: SD32/D8C2 ⊆ Aut C464C4.10SD32128,958
C4.11SD32 = C4.D16φ: SD32/Q16C2 ⊆ Aut C464C4.11SD32128,93
C4.12SD32 = C4.10D16φ: SD32/Q16C2 ⊆ Aut C4128C4.12SD32128,96
C4.13SD32 = Q16⋊Q8φ: SD32/Q16C2 ⊆ Aut C4128C4.13SD32128,957
C4.14SD32 = C4.16D16central extension (φ=1)64C4.14SD32128,63
C4.15SD32 = Q161C8central extension (φ=1)128C4.15SD32128,64
C4.16SD32 = C164C8central extension (φ=1)128C4.16SD32128,104

׿
×
𝔽