Copied to
clipboard

G = C2×C81C8order 128 = 27

Direct product of C2 and C81C8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C81C8, C42.49Q8, C42.318D4, C42.620C23, (C2×C8)⋊5C8, C87(C2×C8), C4(C81C8), (C4×C8).25C4, C4.82(C2×D8), C4.11(C4⋊C8), (C2×C4).165D8, (C2×C4).68Q16, C4.54(C2×Q16), (C22×C8).33C4, C4.25(C22×C8), C4.23(C2.D8), (C22×C4).73Q8, C4⋊C8.264C22, C23.80(C4⋊C4), C22.21(C4⋊C8), C42.308(C2×C4), (C4×C8).388C22, (C22×C4).810D4, C4.40(C2×M4(2)), (C2×C4).74M4(2), C22.20(C2.D8), C22.11(C8.C4), (C2×C42).1039C22, C2.5(C2×C4⋊C8), (C2×C4×C8).31C2, (C2×C4)(C81C8), (C2×C4⋊C8).17C2, C2.1(C2×C2.D8), (C2×C4).81(C2×C8), (C2×C8).218(C2×C4), C2.2(C2×C8.C4), C22.46(C2×C4⋊C4), (C2×C4).147(C2×Q8), (C2×C4).115(C4⋊C4), (C2×C4).1456(C2×D4), (C2×C4).502(C22×C4), (C22×C4).472(C2×C4), SmallGroup(128,295)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2×C81C8
C1C2C22C2×C4C42C2×C42C2×C4×C8 — C2×C81C8
C1C2C4 — C2×C81C8
C1C22×C4C2×C42 — C2×C81C8
C1C22C22C42 — C2×C81C8

Generators and relations for C2×C81C8
 G = < a,b,c | a2=b8=c8=1, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 140 in 100 conjugacy classes, 76 normal (28 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, C22×C4, C4×C8, C4⋊C8, C4⋊C8, C2×C42, C22×C8, C22×C8, C81C8, C2×C4×C8, C2×C4⋊C8, C2×C81C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C23, C4⋊C4, C2×C8, M4(2), D8, Q16, C22×C4, C2×D4, C2×Q8, C4⋊C8, C2.D8, C8.C4, C2×C4⋊C4, C22×C8, C2×M4(2), C2×D8, C2×Q16, C81C8, C2×C4⋊C8, C2×C2.D8, C2×C8.C4, C2×C81C8

Smallest permutation representation of C2×C81C8
Regular action on 128 points
Generators in S128
(1 34)(2 35)(3 36)(4 37)(5 38)(6 39)(7 40)(8 33)(9 117)(10 118)(11 119)(12 120)(13 113)(14 114)(15 115)(16 116)(17 94)(18 95)(19 96)(20 89)(21 90)(22 91)(23 92)(24 93)(25 86)(26 87)(27 88)(28 81)(29 82)(30 83)(31 84)(32 85)(41 99)(42 100)(43 101)(44 102)(45 103)(46 104)(47 97)(48 98)(49 79)(50 80)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 65)(64 66)(105 124)(106 125)(107 126)(108 127)(109 128)(110 121)(111 122)(112 123)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 69 23 120 103 49 82 127)(2 68 24 119 104 56 83 126)(3 67 17 118 97 55 84 125)(4 66 18 117 98 54 85 124)(5 65 19 116 99 53 86 123)(6 72 20 115 100 52 87 122)(7 71 21 114 101 51 88 121)(8 70 22 113 102 50 81 128)(9 48 76 32 105 37 64 95)(10 47 77 31 106 36 57 94)(11 46 78 30 107 35 58 93)(12 45 79 29 108 34 59 92)(13 44 80 28 109 33 60 91)(14 43 73 27 110 40 61 90)(15 42 74 26 111 39 62 89)(16 41 75 25 112 38 63 96)

G:=sub<Sym(128)| (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,33)(9,117)(10,118)(11,119)(12,120)(13,113)(14,114)(15,115)(16,116)(17,94)(18,95)(19,96)(20,89)(21,90)(22,91)(23,92)(24,93)(25,86)(26,87)(27,88)(28,81)(29,82)(30,83)(31,84)(32,85)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,97)(48,98)(49,79)(50,80)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,65)(64,66)(105,124)(106,125)(107,126)(108,127)(109,128)(110,121)(111,122)(112,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,69,23,120,103,49,82,127)(2,68,24,119,104,56,83,126)(3,67,17,118,97,55,84,125)(4,66,18,117,98,54,85,124)(5,65,19,116,99,53,86,123)(6,72,20,115,100,52,87,122)(7,71,21,114,101,51,88,121)(8,70,22,113,102,50,81,128)(9,48,76,32,105,37,64,95)(10,47,77,31,106,36,57,94)(11,46,78,30,107,35,58,93)(12,45,79,29,108,34,59,92)(13,44,80,28,109,33,60,91)(14,43,73,27,110,40,61,90)(15,42,74,26,111,39,62,89)(16,41,75,25,112,38,63,96)>;

G:=Group( (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,33)(9,117)(10,118)(11,119)(12,120)(13,113)(14,114)(15,115)(16,116)(17,94)(18,95)(19,96)(20,89)(21,90)(22,91)(23,92)(24,93)(25,86)(26,87)(27,88)(28,81)(29,82)(30,83)(31,84)(32,85)(41,99)(42,100)(43,101)(44,102)(45,103)(46,104)(47,97)(48,98)(49,79)(50,80)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,65)(64,66)(105,124)(106,125)(107,126)(108,127)(109,128)(110,121)(111,122)(112,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,69,23,120,103,49,82,127)(2,68,24,119,104,56,83,126)(3,67,17,118,97,55,84,125)(4,66,18,117,98,54,85,124)(5,65,19,116,99,53,86,123)(6,72,20,115,100,52,87,122)(7,71,21,114,101,51,88,121)(8,70,22,113,102,50,81,128)(9,48,76,32,105,37,64,95)(10,47,77,31,106,36,57,94)(11,46,78,30,107,35,58,93)(12,45,79,29,108,34,59,92)(13,44,80,28,109,33,60,91)(14,43,73,27,110,40,61,90)(15,42,74,26,111,39,62,89)(16,41,75,25,112,38,63,96) );

G=PermutationGroup([[(1,34),(2,35),(3,36),(4,37),(5,38),(6,39),(7,40),(8,33),(9,117),(10,118),(11,119),(12,120),(13,113),(14,114),(15,115),(16,116),(17,94),(18,95),(19,96),(20,89),(21,90),(22,91),(23,92),(24,93),(25,86),(26,87),(27,88),(28,81),(29,82),(30,83),(31,84),(32,85),(41,99),(42,100),(43,101),(44,102),(45,103),(46,104),(47,97),(48,98),(49,79),(50,80),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,65),(64,66),(105,124),(106,125),(107,126),(108,127),(109,128),(110,121),(111,122),(112,123)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,69,23,120,103,49,82,127),(2,68,24,119,104,56,83,126),(3,67,17,118,97,55,84,125),(4,66,18,117,98,54,85,124),(5,65,19,116,99,53,86,123),(6,72,20,115,100,52,87,122),(7,71,21,114,101,51,88,121),(8,70,22,113,102,50,81,128),(9,48,76,32,105,37,64,95),(10,47,77,31,106,36,57,94),(11,46,78,30,107,35,58,93),(12,45,79,29,108,34,59,92),(13,44,80,28,109,33,60,91),(14,43,73,27,110,40,61,90),(15,42,74,26,111,39,62,89),(16,41,75,25,112,38,63,96)]])

56 conjugacy classes

class 1 2A···2G4A···4H4I···4P8A···8P8Q···8AF
order12···24···44···48···88···8
size11···11···12···22···24···4

56 irreducible representations

dim111111122222222
type+++++-+-+-
imageC1C2C2C2C4C4C8D4Q8D4Q8M4(2)D8Q16C8.C4
kernelC2×C81C8C81C8C2×C4×C8C2×C4⋊C8C4×C8C22×C8C2×C8C42C42C22×C4C22×C4C2×C4C2×C4C2×C4C22
# reps1412441611114448

Matrix representation of C2×C81C8 in GL4(𝔽17) generated by

16000
01600
0010
0001
,
1000
01600
00011
00311
,
2000
01600
00107
0057
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,16,0,0,0,0,0,3,0,0,11,11],[2,0,0,0,0,16,0,0,0,0,10,5,0,0,7,7] >;

C2×C81C8 in GAP, Magma, Sage, TeX

C_2\times C_8\rtimes_1C_8
% in TeX

G:=Group("C2xC8:1C8");
// GroupNames label

G:=SmallGroup(128,295);
// by ID

G=gap.SmallGroup(128,295);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,288,1123,136,172]);
// Polycyclic

G:=Group<a,b,c|a^2=b^8=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽