Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C2.D8

Direct product G=N×Q with N=C2 and Q=C2×C2.D8
dρLabelID
C22×C2.D8128C2^2xC2.D8128,1640


Non-split extensions G=N.Q with N=C2 and Q=C2×C2.D8
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C2.D8) = C2×C81C8central extension (φ=1)128C2.1(C2xC2.D8)128,295
C2.2(C2×C2.D8) = C2×C22.4Q16central extension (φ=1)128C2.2(C2xC2.D8)128,466
C2.3(C2×C2.D8) = C4×C2.D8central extension (φ=1)128C2.3(C2xC2.D8)128,507
C2.4(C2×C2.D8) = C87M4(2)central stem extension (φ=1)64C2.4(C2xC2.D8)128,299
C2.5(C2×C2.D8) = C42.91D4central stem extension (φ=1)64C2.5(C2xC2.D8)128,303
C2.6(C2×C2.D8) = C23.22D8central stem extension (φ=1)64C2.6(C2xC2.D8)128,540
C2.7(C2×C2.D8) = C42.55Q8central stem extension (φ=1)128C2.7(C2xC2.D8)128,566
C2.8(C2×C2.D8) = C42.59Q8central stem extension (φ=1)128C2.8(C2xC2.D8)128,577
C2.9(C2×C2.D8) = C23.37D8central stem extension (φ=1)64C2.9(C2xC2.D8)128,584
C2.10(C2×C2.D8) = C42.29Q8central stem extension (φ=1)128C2.10(C2xC2.D8)128,679
C2.11(C2×C2.D8) = C2×C163C4central stem extension (φ=1)128C2.11(C2xC2.D8)128,888
C2.12(C2×C2.D8) = C2×C164C4central stem extension (φ=1)128C2.12(C2xC2.D8)128,889
C2.13(C2×C2.D8) = C23.25D8central stem extension (φ=1)64C2.13(C2xC2.D8)128,890
C2.14(C2×C2.D8) = M5(2)⋊1C4central stem extension (φ=1)64C2.14(C2xC2.D8)128,891
C2.15(C2×C2.D8) = C2×C8.4Q8central stem extension (φ=1)64C2.15(C2xC2.D8)128,892
C2.16(C2×C2.D8) = M5(2).1C4central stem extension (φ=1)324C2.16(C2xC2.D8)128,893

׿
×
𝔽