p-group, metabelian, nilpotent (class 4), monomial
Aliases: C8.24D8, C8.1SD16, (C2×C8).77D4, C8.C8⋊8C2, C4⋊1D4.2C4, C8⋊4D4.12C2, C42.44(C2×C4), C4.1(D4⋊C4), (C4×C8).132C22, C2.3(C4.D8), C22.12(C4.D4), (C2×C4).58(C22⋊C4), SmallGroup(128,89)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.24D8
G = < a,b,c | a8=1, b8=a4, c2=a, bab-1=a-1, ac=ca, cbc-1=a5b7 >
Character table of C8.24D8
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 2 | 16 | 16 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | -i | -i | i | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | i | i | -i | i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -√2 | 0 | √2 | 0 | -√2 | 0 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -√2 | 0 | -√2 | 0 | √2 | 0 | √2 | 0 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | √2 | 0 | -√2 | 0 | √2 | 0 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | √2 | 0 | √2 | 0 | -√2 | 0 | -√2 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | -√-2 | 0 | -√-2 | 0 | √-2 | 0 | √-2 | complex lifted from SD16 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | -√-2 | 0 | √-2 | 0 | -√-2 | 0 | √-2 | 0 | complex lifted from SD16 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | √-2 | 0 | -√-2 | 0 | √-2 | 0 | -√-2 | 0 | complex lifted from SD16 |
ρ18 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | √-2 | 0 | √-2 | 0 | -√-2 | 0 | -√-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | 4 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2√2 | 2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2√2 | 2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2√2 | -2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2√2 | -2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 11 5 15 9 3 13 7)(2 8 14 4 10 16 6 12)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)
(1 4 11 10 5 16 15 6 9 12 3 2 13 8 7 14)
G:=sub<Sym(16)| (1,11,5,15,9,3,13,7)(2,8,14,4,10,16,6,12), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (1,4,11,10,5,16,15,6,9,12,3,2,13,8,7,14)>;
G:=Group( (1,11,5,15,9,3,13,7)(2,8,14,4,10,16,6,12), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (1,4,11,10,5,16,15,6,9,12,3,2,13,8,7,14) );
G=PermutationGroup([[(1,11,5,15,9,3,13,7),(2,8,14,4,10,16,6,12)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)], [(1,4,11,10,5,16,15,6,9,12,3,2,13,8,7,14)]])
G:=TransitiveGroup(16,356);
Matrix representation of C8.24D8 ►in GL4(𝔽7) generated by
5 | 0 | 2 | 6 |
6 | 5 | 5 | 6 |
6 | 1 | 1 | 2 |
2 | 2 | 6 | 2 |
5 | 3 | 0 | 5 |
0 | 6 | 0 | 5 |
5 | 1 | 3 | 1 |
3 | 5 | 5 | 0 |
5 | 3 | 0 | 5 |
0 | 1 | 0 | 2 |
5 | 6 | 6 | 0 |
3 | 2 | 6 | 2 |
G:=sub<GL(4,GF(7))| [5,6,6,2,0,5,1,2,2,5,1,6,6,6,2,2],[5,0,5,3,3,6,1,5,0,0,3,5,5,5,1,0],[5,0,5,3,3,1,6,2,0,0,6,6,5,2,0,2] >;
C8.24D8 in GAP, Magma, Sage, TeX
C_8._{24}D_8
% in TeX
G:=Group("C8.24D8");
// GroupNames label
G:=SmallGroup(128,89);
// by ID
G=gap.SmallGroup(128,89);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,422,387,184,1690,192,2804,1411,172,4037]);
// Polycyclic
G:=Group<a,b,c|a^8=1,b^8=a^4,c^2=a,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^5*b^7>;
// generators/relations
Export
Subgroup lattice of C8.24D8 in TeX
Character table of C8.24D8 in TeX