p-group, metabelian, nilpotent (class 4), monomial
Aliases: C8.25D8, C8.2SD16, C4⋊Q8.2C4, (C2×C8).78D4, C8.C8.1C2, C42.45(C2×C4), C4.2(D4⋊C4), (C4×C8).133C22, C4⋊Q16.12C2, C2.4(C4.D8), C22.13(C4.D4), (C2×C4).59(C22⋊C4), SmallGroup(128,90)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.25D8
G = < a,b,c | a8=1, b8=a4, c2=a5, bab-1=a-1, ac=ca, cbc-1=a5b7 >
Character table of C8.25D8
class | 1 | 2A | 2B | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | -i | -i | i | i | -i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | i | -i | -i | -i | -i | i | i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | i | i | -i | -i | i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | i | i | i | i | -i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -√2 | √2 | -√2 | 0 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | √2 | √2 | -√2 | 0 | 0 | 0 | -√2 | 0 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | -√2 | -√2 | √2 | 0 | 0 | 0 | √2 | 0 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | √2 | -√2 | √2 | 0 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | √-2 | -√-2 | √-2 | 0 | 0 | 0 | -√-2 | 0 | complex lifted from SD16 |
ρ16 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | 0 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | -√-2 | √-2 | -√-2 | 0 | 0 | 0 | √-2 | 0 | complex lifted from SD16 |
ρ18 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | 0 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | -2√2 | 2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ23 | 4 | -4 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2√2 | -2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 3 5 7 9 11 13 15)(2 16 14 12 10 8 6 4)(17 19 21 23 25 27 29 31)(18 32 30 28 26 24 22 20)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 20 11 26 5 32 15 22 9 28 3 18 13 24 7 30)(2 21 8 31 14 25 4 19 10 29 16 23 6 17 12 27)
G:=sub<Sym(32)| (1,3,5,7,9,11,13,15)(2,16,14,12,10,8,6,4)(17,19,21,23,25,27,29,31)(18,32,30,28,26,24,22,20), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,20,11,26,5,32,15,22,9,28,3,18,13,24,7,30)(2,21,8,31,14,25,4,19,10,29,16,23,6,17,12,27)>;
G:=Group( (1,3,5,7,9,11,13,15)(2,16,14,12,10,8,6,4)(17,19,21,23,25,27,29,31)(18,32,30,28,26,24,22,20), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,20,11,26,5,32,15,22,9,28,3,18,13,24,7,30)(2,21,8,31,14,25,4,19,10,29,16,23,6,17,12,27) );
G=PermutationGroup([[(1,3,5,7,9,11,13,15),(2,16,14,12,10,8,6,4),(17,19,21,23,25,27,29,31),(18,32,30,28,26,24,22,20)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,20,11,26,5,32,15,22,9,28,3,18,13,24,7,30),(2,21,8,31,14,25,4,19,10,29,16,23,6,17,12,27)]])
Matrix representation of C8.25D8 ►in GL4(𝔽7) generated by
2 | 5 | 3 | 2 |
6 | 2 | 3 | 5 |
6 | 6 | 0 | 2 |
2 | 5 | 6 | 4 |
6 | 6 | 2 | 0 |
4 | 5 | 3 | 3 |
4 | 2 | 0 | 1 |
2 | 2 | 1 | 3 |
3 | 3 | 1 | 5 |
3 | 2 | 3 | 3 |
5 | 4 | 4 | 5 |
2 | 5 | 6 | 5 |
G:=sub<GL(4,GF(7))| [2,6,6,2,5,2,6,5,3,3,0,6,2,5,2,4],[6,4,4,2,6,5,2,2,2,3,0,1,0,3,1,3],[3,3,5,2,3,2,4,5,1,3,4,6,5,3,5,5] >;
C8.25D8 in GAP, Magma, Sage, TeX
C_8._{25}D_8
% in TeX
G:=Group("C8.25D8");
// GroupNames label
G:=SmallGroup(128,90);
// by ID
G=gap.SmallGroup(128,90);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,456,422,387,184,1690,192,2804,1411,172,4037]);
// Polycyclic
G:=Group<a,b,c|a^8=1,b^8=a^4,c^2=a^5,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^5*b^7>;
// generators/relations
Export
Subgroup lattice of C8.25D8 in TeX
Character table of C8.25D8 in TeX