Extensions 1→N→G→Q→1 with N=C4 and Q=C4.Q8

Direct product G=N×Q with N=C4 and Q=C4.Q8
dρLabelID
C4×C4.Q8128C4xC4.Q8128,506

Semidirect products G=N:Q with N=C4 and Q=C4.Q8
extensionφ:Q→Aut NdρLabelID
C41(C4.Q8) = C42.30Q8φ: C4.Q8/C4⋊C4C2 ⊆ Aut C4128C4:1(C4.Q8)128,680
C42(C4.Q8) = C42.58Q8φ: C4.Q8/C2×C8C2 ⊆ Aut C4128C4:2(C4.Q8)128,576

Non-split extensions G=N.Q with N=C4 and Q=C4.Q8
extensionφ:Q→Aut NdρLabelID
C4.1(C4.Q8) = C42.8Q8φ: C4.Q8/C4⋊C4C2 ⊆ Aut C4128C4.1(C4.Q8)128,28
C4.2(C4.Q8) = C42.10Q8φ: C4.Q8/C4⋊C4C2 ⊆ Aut C432C4.2(C4.Q8)128,35
C4.3(C4.Q8) = C8.C42φ: C4.Q8/C4⋊C4C2 ⊆ Aut C432C4.3(C4.Q8)128,118
C4.4(C4.Q8) = M5(2).C4φ: C4.Q8/C4⋊C4C2 ⊆ Aut C4324C4.4(C4.Q8)128,120
C4.5(C4.Q8) = C42.90D4φ: C4.Q8/C4⋊C4C2 ⊆ Aut C464C4.5(C4.Q8)128,302
C4.6(C4.Q8) = C2×C8.Q8φ: C4.Q8/C4⋊C4C2 ⊆ Aut C432C4.6(C4.Q8)128,886
C4.7(C4.Q8) = C42.5Q8φ: C4.Q8/C2×C8C2 ⊆ Aut C432C4.7(C4.Q8)128,18
C4.8(C4.Q8) = C8.7C42φ: C4.Q8/C2×C8C2 ⊆ Aut C4128C4.8(C4.Q8)128,112
C4.9(C4.Q8) = C8.8C42φ: C4.Q8/C2×C8C2 ⊆ Aut C464C4.9(C4.Q8)128,113
C4.10(C4.Q8) = C88M4(2)φ: C4.Q8/C2×C8C2 ⊆ Aut C464C4.10(C4.Q8)128,298
C4.11(C4.Q8) = C42.55Q8φ: C4.Q8/C2×C8C2 ⊆ Aut C4128C4.11(C4.Q8)128,566
C4.12(C4.Q8) = C42.46Q8central extension (φ=1)128C4.12(C4.Q8)128,11
C4.13(C4.Q8) = C82C16central extension (φ=1)128C4.13(C4.Q8)128,99
C4.14(C4.Q8) = C16.C8central extension (φ=1)324C4.14(C4.Q8)128,101
C4.15(C4.Q8) = C23.9D8central extension (φ=1)324C4.15(C4.Q8)128,116
C4.16(C4.Q8) = C8.13C42central extension (φ=1)324C4.16(C4.Q8)128,117
C4.17(C4.Q8) = C2×C82C8central extension (φ=1)128C4.17(C4.Q8)128,294
C4.18(C4.Q8) = M5(2)⋊3C4central extension (φ=1)324C4.18(C4.Q8)128,887

׿
×
𝔽