p-group, metabelian, nilpotent (class 4), monomial
Aliases: Q16⋊3C8, C42.34D4, C8.2M4(2), C4.4C4≀C2, C8.2(C2×C8), C8⋊2C8.4C2, C2.9(D4⋊C8), (C2×C4).101D8, (C2×C8).298D4, C16⋊5C4.6C2, C2.D8.16C4, C4.4(C22⋊C8), (C4×Q16).14C2, (C2×Q16).10C4, (C2×C4).85SD16, C2.2(D8⋊2C4), (C4×C8).130C22, C2.1(C8.17D4), C22.43(D4⋊C4), (C2×C8).47(C2×C4), (C2×C4).214(C22⋊C4), SmallGroup(128,66)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q16⋊C8
G = < a,b,c | a8=c8=1, b2=a4, bab-1=a-1, cac-1=a3, cbc-1=a3b >
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 61 5 57)(2 60 6 64)(3 59 7 63)(4 58 8 62)(9 70 13 66)(10 69 14 65)(11 68 15 72)(12 67 16 71)(17 81 21 85)(18 88 22 84)(19 87 23 83)(20 86 24 82)(25 44 29 48)(26 43 30 47)(27 42 31 46)(28 41 32 45)(33 53 37 49)(34 52 38 56)(35 51 39 55)(36 50 40 54)(73 126 77 122)(74 125 78 121)(75 124 79 128)(76 123 80 127)(89 114 93 118)(90 113 94 117)(91 120 95 116)(92 119 96 115)(97 109 101 105)(98 108 102 112)(99 107 103 111)(100 106 104 110)
(1 100 34 93 31 86 14 77)(2 103 35 96 32 81 15 80)(3 98 36 91 25 84 16 75)(4 101 37 94 26 87 9 78)(5 104 38 89 27 82 10 73)(6 99 39 92 28 85 11 76)(7 102 40 95 29 88 12 79)(8 97 33 90 30 83 13 74)(17 69 127 61 107 56 115 46)(18 72 128 64 108 51 116 41)(19 67 121 59 109 54 117 44)(20 70 122 62 110 49 118 47)(21 65 123 57 111 52 119 42)(22 68 124 60 112 55 120 45)(23 71 125 63 105 50 113 48)(24 66 126 58 106 53 114 43)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,61,5,57)(2,60,6,64)(3,59,7,63)(4,58,8,62)(9,70,13,66)(10,69,14,65)(11,68,15,72)(12,67,16,71)(17,81,21,85)(18,88,22,84)(19,87,23,83)(20,86,24,82)(25,44,29,48)(26,43,30,47)(27,42,31,46)(28,41,32,45)(33,53,37,49)(34,52,38,56)(35,51,39,55)(36,50,40,54)(73,126,77,122)(74,125,78,121)(75,124,79,128)(76,123,80,127)(89,114,93,118)(90,113,94,117)(91,120,95,116)(92,119,96,115)(97,109,101,105)(98,108,102,112)(99,107,103,111)(100,106,104,110), (1,100,34,93,31,86,14,77)(2,103,35,96,32,81,15,80)(3,98,36,91,25,84,16,75)(4,101,37,94,26,87,9,78)(5,104,38,89,27,82,10,73)(6,99,39,92,28,85,11,76)(7,102,40,95,29,88,12,79)(8,97,33,90,30,83,13,74)(17,69,127,61,107,56,115,46)(18,72,128,64,108,51,116,41)(19,67,121,59,109,54,117,44)(20,70,122,62,110,49,118,47)(21,65,123,57,111,52,119,42)(22,68,124,60,112,55,120,45)(23,71,125,63,105,50,113,48)(24,66,126,58,106,53,114,43)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,61,5,57)(2,60,6,64)(3,59,7,63)(4,58,8,62)(9,70,13,66)(10,69,14,65)(11,68,15,72)(12,67,16,71)(17,81,21,85)(18,88,22,84)(19,87,23,83)(20,86,24,82)(25,44,29,48)(26,43,30,47)(27,42,31,46)(28,41,32,45)(33,53,37,49)(34,52,38,56)(35,51,39,55)(36,50,40,54)(73,126,77,122)(74,125,78,121)(75,124,79,128)(76,123,80,127)(89,114,93,118)(90,113,94,117)(91,120,95,116)(92,119,96,115)(97,109,101,105)(98,108,102,112)(99,107,103,111)(100,106,104,110), (1,100,34,93,31,86,14,77)(2,103,35,96,32,81,15,80)(3,98,36,91,25,84,16,75)(4,101,37,94,26,87,9,78)(5,104,38,89,27,82,10,73)(6,99,39,92,28,85,11,76)(7,102,40,95,29,88,12,79)(8,97,33,90,30,83,13,74)(17,69,127,61,107,56,115,46)(18,72,128,64,108,51,116,41)(19,67,121,59,109,54,117,44)(20,70,122,62,110,49,118,47)(21,65,123,57,111,52,119,42)(22,68,124,60,112,55,120,45)(23,71,125,63,105,50,113,48)(24,66,126,58,106,53,114,43) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,61,5,57),(2,60,6,64),(3,59,7,63),(4,58,8,62),(9,70,13,66),(10,69,14,65),(11,68,15,72),(12,67,16,71),(17,81,21,85),(18,88,22,84),(19,87,23,83),(20,86,24,82),(25,44,29,48),(26,43,30,47),(27,42,31,46),(28,41,32,45),(33,53,37,49),(34,52,38,56),(35,51,39,55),(36,50,40,54),(73,126,77,122),(74,125,78,121),(75,124,79,128),(76,123,80,127),(89,114,93,118),(90,113,94,117),(91,120,95,116),(92,119,96,115),(97,109,101,105),(98,108,102,112),(99,107,103,111),(100,106,104,110)], [(1,100,34,93,31,86,14,77),(2,103,35,96,32,81,15,80),(3,98,36,91,25,84,16,75),(4,101,37,94,26,87,9,78),(5,104,38,89,27,82,10,73),(6,99,39,92,28,85,11,76),(7,102,40,95,29,88,12,79),(8,97,33,90,30,83,13,74),(17,69,127,61,107,56,115,46),(18,72,128,64,108,51,116,41),(19,67,121,59,109,54,117,44),(20,70,122,62,110,49,118,47),(21,65,123,57,111,52,119,42),(22,68,124,60,112,55,120,45),(23,71,125,63,105,50,113,48),(24,66,126,58,106,53,114,43)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 16A | ··· | 16H |
order | 1 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | |||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | D4 | D4 | M4(2) | D8 | SD16 | C4≀C2 | D8⋊2C4 | C8.17D4 |
kernel | Q16⋊C8 | C8⋊2C8 | C16⋊5C4 | C4×Q16 | C2.D8 | C2×Q16 | Q16 | C42 | C2×C8 | C8 | C2×C4 | C2×C4 | C4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 2 |
Matrix representation of Q16⋊C8 ►in GL6(𝔽17)
12 | 13 | 0 | 0 | 0 | 0 |
15 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 6 |
0 | 0 | 14 | 3 | 6 | 11 |
0 | 0 | 14 | 3 | 0 | 0 |
0 | 0 | 14 | 6 | 3 | 11 |
8 | 1 | 0 | 0 | 0 | 0 |
5 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 2 | 1 | 2 |
0 | 0 | 5 | 4 | 14 | 4 |
0 | 0 | 5 | 13 | 3 | 6 |
0 | 0 | 5 | 3 | 4 | 15 |
10 | 9 | 0 | 0 | 0 | 0 |
13 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 12 | 7 | 2 |
0 | 0 | 4 | 2 | 8 | 16 |
0 | 0 | 13 | 14 | 3 | 8 |
0 | 0 | 9 | 10 | 16 | 4 |
G:=sub<GL(6,GF(17))| [12,15,0,0,0,0,13,5,0,0,0,0,0,0,3,14,14,14,0,0,14,3,3,6,0,0,0,6,0,3,0,0,6,11,0,11],[8,5,0,0,0,0,1,9,0,0,0,0,0,0,12,5,5,5,0,0,2,4,13,3,0,0,1,14,3,4,0,0,2,4,6,15],[10,13,0,0,0,0,9,7,0,0,0,0,0,0,8,4,13,9,0,0,12,2,14,10,0,0,7,8,3,16,0,0,2,16,8,4] >;
Q16⋊C8 in GAP, Magma, Sage, TeX
Q_{16}\rtimes C_8
% in TeX
G:=Group("Q16:C8");
// GroupNames label
G:=SmallGroup(128,66);
// by ID
G=gap.SmallGroup(128,66);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,456,422,891,100,1018,136,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c|a^8=c^8=1,b^2=a^4,b*a*b^-1=a^-1,c*a*c^-1=a^3,c*b*c^-1=a^3*b>;
// generators/relations
Export