p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊2SD16, C42.192C23, D4⋊C8⋊12C2, Q8⋊C8⋊22C2, C4⋊C4.51D4, C8⋊5D4⋊15C2, C4.Q16⋊2C2, (C2×D4).47D4, C4.D8⋊7C2, C4⋊C8.6C22, D4⋊2Q8⋊30C2, C4.56(C4○D8), (C2×Q8).196D4, Q8⋊6D4.1C2, C4.28(C2×SD16), C4⋊Q8.13C22, C4.34(C8⋊C22), (C4×C8).244C22, (C4×D4).25C22, (C4×Q8).25C22, C2.20(D4⋊4D4), C4⋊1D4.16C22, C4.60(C8.C22), C2.13(D4.7D4), C22.158C22≀C2, C2.11(C22⋊SD16), (C2×C4).949(C2×D4), SmallGroup(128,363)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8⋊2SD16
G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=dad=a-1, ac=ca, cbc-1=a-1b, bd=db, dcd=c3 >
Subgroups: 336 in 128 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C4×D4, C4×D4, C4×Q8, C4⋊D4, C4⋊1D4, C4⋊1D4, C4⋊Q8, C2×SD16, C2×C4○D4, D4⋊C8, Q8⋊C8, C4.D8, D4⋊2Q8, C4.Q16, C8⋊5D4, Q8⋊6D4, Q8⋊2SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C22≀C2, C2×SD16, C4○D8, C8⋊C22, C8.C22, C22⋊SD16, D4.7D4, D4⋊4D4, Q8⋊2SD16
Character table of Q8⋊2SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | -√2 | 0 | √2 | 0 | complex lifted from C4○D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√2 | 0 | √2 | 0 | complex lifted from C4○D8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √2 | 0 | -√2 | 0 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 0 | √-2 | 0 | -√-2 | complex lifted from SD16 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 0 | -√-2 | 0 | √-2 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | √2 | 0 | -√2 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 0 | -√-2 | 0 | √-2 | complex lifted from SD16 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 0 | √-2 | 0 | -√-2 | complex lifted from SD16 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 20 57 38)(2 21 58 39)(3 22 59 40)(4 23 60 33)(5 24 61 34)(6 17 62 35)(7 18 63 36)(8 19 64 37)(9 50 45 28)(10 51 46 29)(11 52 47 30)(12 53 48 31)(13 54 41 32)(14 55 42 25)(15 56 43 26)(16 49 44 27)
(1 53 57 31)(2 41 58 13)(3 25 59 55)(4 15 60 43)(5 49 61 27)(6 45 62 9)(7 29 63 51)(8 11 64 47)(10 18 46 36)(12 38 48 20)(14 22 42 40)(16 34 44 24)(17 50 35 28)(19 30 37 52)(21 54 39 32)(23 26 33 56)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 4)(3 7)(6 8)(9 47)(10 42)(11 45)(12 48)(13 43)(14 46)(15 41)(16 44)(17 37)(18 40)(19 35)(20 38)(21 33)(22 36)(23 39)(24 34)(25 29)(26 32)(28 30)(50 52)(51 55)(54 56)(58 60)(59 63)(62 64)
G:=sub<Sym(64)| (1,20,57,38)(2,21,58,39)(3,22,59,40)(4,23,60,33)(5,24,61,34)(6,17,62,35)(7,18,63,36)(8,19,64,37)(9,50,45,28)(10,51,46,29)(11,52,47,30)(12,53,48,31)(13,54,41,32)(14,55,42,25)(15,56,43,26)(16,49,44,27), (1,53,57,31)(2,41,58,13)(3,25,59,55)(4,15,60,43)(5,49,61,27)(6,45,62,9)(7,29,63,51)(8,11,64,47)(10,18,46,36)(12,38,48,20)(14,22,42,40)(16,34,44,24)(17,50,35,28)(19,30,37,52)(21,54,39,32)(23,26,33,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,47)(10,42)(11,45)(12,48)(13,43)(14,46)(15,41)(16,44)(17,37)(18,40)(19,35)(20,38)(21,33)(22,36)(23,39)(24,34)(25,29)(26,32)(28,30)(50,52)(51,55)(54,56)(58,60)(59,63)(62,64)>;
G:=Group( (1,20,57,38)(2,21,58,39)(3,22,59,40)(4,23,60,33)(5,24,61,34)(6,17,62,35)(7,18,63,36)(8,19,64,37)(9,50,45,28)(10,51,46,29)(11,52,47,30)(12,53,48,31)(13,54,41,32)(14,55,42,25)(15,56,43,26)(16,49,44,27), (1,53,57,31)(2,41,58,13)(3,25,59,55)(4,15,60,43)(5,49,61,27)(6,45,62,9)(7,29,63,51)(8,11,64,47)(10,18,46,36)(12,38,48,20)(14,22,42,40)(16,34,44,24)(17,50,35,28)(19,30,37,52)(21,54,39,32)(23,26,33,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,47)(10,42)(11,45)(12,48)(13,43)(14,46)(15,41)(16,44)(17,37)(18,40)(19,35)(20,38)(21,33)(22,36)(23,39)(24,34)(25,29)(26,32)(28,30)(50,52)(51,55)(54,56)(58,60)(59,63)(62,64) );
G=PermutationGroup([[(1,20,57,38),(2,21,58,39),(3,22,59,40),(4,23,60,33),(5,24,61,34),(6,17,62,35),(7,18,63,36),(8,19,64,37),(9,50,45,28),(10,51,46,29),(11,52,47,30),(12,53,48,31),(13,54,41,32),(14,55,42,25),(15,56,43,26),(16,49,44,27)], [(1,53,57,31),(2,41,58,13),(3,25,59,55),(4,15,60,43),(5,49,61,27),(6,45,62,9),(7,29,63,51),(8,11,64,47),(10,18,46,36),(12,38,48,20),(14,22,42,40),(16,34,44,24),(17,50,35,28),(19,30,37,52),(21,54,39,32),(23,26,33,56)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,4),(3,7),(6,8),(9,47),(10,42),(11,45),(12,48),(13,43),(14,46),(15,41),(16,44),(17,37),(18,40),(19,35),(20,38),(21,33),(22,36),(23,39),(24,34),(25,29),(26,32),(28,30),(50,52),(51,55),(54,56),(58,60),(59,63),(62,64)]])
Matrix representation of Q8⋊2SD16 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
5 | 12 | 0 | 0 |
5 | 5 | 0 | 0 |
0 | 0 | 0 | 10 |
0 | 0 | 12 | 10 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 16 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,13,0,0,0,0,16,0,0,0,0,16],[5,5,0,0,12,5,0,0,0,0,0,12,0,0,10,10],[1,0,0,0,0,16,0,0,0,0,1,1,0,0,0,16] >;
Q8⋊2SD16 in GAP, Magma, Sage, TeX
Q_8\rtimes_2{\rm SD}_{16}
% in TeX
G:=Group("Q8:2SD16");
// GroupNames label
G:=SmallGroup(128,363);
// by ID
G=gap.SmallGroup(128,363);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,422,352,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d=c^3>;
// generators/relations
Export