Copied to
clipboard

G = C2×C8.4Q8order 128 = 27

Direct product of C2 and C8.4Q8

direct product, p-group, metabelian, nilpotent (class 4), monomial

Aliases: C2×C8.4Q8, C23.14Q16, C4.90(C2×D8), C8.25(C4⋊C4), (C2×C8).55Q8, C8.24(C2×Q8), (C2×C16).14C4, C16.21(C2×C4), (C2×C8).270D4, (C2×C4).171D8, C4(C8.4Q8), (C2×C4).42Q16, C8.55(C22×C4), C4.18(C2.D8), C22.1(C2×Q16), (C22×C16).14C2, (C2×C16).94C22, (C2×C8).578C23, (C22×C4).589D4, C22.14(C2.D8), C8.C4.14C22, (C22×C8).554C22, C4.54(C2×C4⋊C4), C2.15(C2×C2.D8), (C2×C8).227(C2×C4), (C2×C4).766(C2×D4), (C2×C4).145(C4⋊C4), (C2×C8.C4).24C2, SmallGroup(128,892)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C2×C8.4Q8
C1C2C4C2×C4C2×C8C22×C8C22×C16 — C2×C8.4Q8
C1C2C4C8 — C2×C8.4Q8
C1C2×C4C22×C4C22×C8 — C2×C8.4Q8
C1C2C2C2C2C4C4C2×C8 — C2×C8.4Q8

Generators and relations for C2×C8.4Q8
 G = < a,b,c,d | a2=b8=1, c4=b2, d2=bc2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b3, dcd-1=b6c3 >

Subgroups: 108 in 72 conjugacy classes, 52 normal (32 characteristic)
C1, C2, C2, C2, C4, C22, C22, C8, C8, C2×C4, C23, C16, C2×C8, C2×C8, M4(2), C22×C4, C8.C4, C8.C4, C2×C16, C2×C16, C22×C8, C2×M4(2), C8.4Q8, C2×C8.C4, C22×C16, C2×C8.4Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, D8, Q16, C22×C4, C2×D4, C2×Q8, C2.D8, C2×C4⋊C4, C2×D8, C2×Q16, C8.4Q8, C2×C2.D8, C2×C8.4Q8

Smallest permutation representation of C2×C8.4Q8
On 64 points
Generators in S64
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 34)(18 35)(19 36)(20 37)(21 38)(22 39)(23 40)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 33)
(1 11 5 15 9 3 13 7)(2 12 6 16 10 4 14 8)(17 19 21 23 25 27 29 31)(18 20 22 24 26 28 30 32)(33 35 37 39 41 43 45 47)(34 36 38 40 42 44 46 48)(49 59 53 63 57 51 61 55)(50 60 54 64 58 52 62 56)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 24 13 28 9 32 5 20)(2 23 14 27 10 31 6 19)(3 22 15 26 11 30 7 18)(4 21 16 25 12 29 8 17)(33 53 37 49 41 61 45 57)(34 52 38 64 42 60 46 56)(35 51 39 63 43 59 47 55)(36 50 40 62 44 58 48 54)

G:=sub<Sym(64)| (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,33), (1,11,5,15,9,3,13,7)(2,12,6,16,10,4,14,8)(17,19,21,23,25,27,29,31)(18,20,22,24,26,28,30,32)(33,35,37,39,41,43,45,47)(34,36,38,40,42,44,46,48)(49,59,53,63,57,51,61,55)(50,60,54,64,58,52,62,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,24,13,28,9,32,5,20)(2,23,14,27,10,31,6,19)(3,22,15,26,11,30,7,18)(4,21,16,25,12,29,8,17)(33,53,37,49,41,61,45,57)(34,52,38,64,42,60,46,56)(35,51,39,63,43,59,47,55)(36,50,40,62,44,58,48,54)>;

G:=Group( (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,34)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,33), (1,11,5,15,9,3,13,7)(2,12,6,16,10,4,14,8)(17,19,21,23,25,27,29,31)(18,20,22,24,26,28,30,32)(33,35,37,39,41,43,45,47)(34,36,38,40,42,44,46,48)(49,59,53,63,57,51,61,55)(50,60,54,64,58,52,62,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,24,13,28,9,32,5,20)(2,23,14,27,10,31,6,19)(3,22,15,26,11,30,7,18)(4,21,16,25,12,29,8,17)(33,53,37,49,41,61,45,57)(34,52,38,64,42,60,46,56)(35,51,39,63,43,59,47,55)(36,50,40,62,44,58,48,54) );

G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,34),(18,35),(19,36),(20,37),(21,38),(22,39),(23,40),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,33)], [(1,11,5,15,9,3,13,7),(2,12,6,16,10,4,14,8),(17,19,21,23,25,27,29,31),(18,20,22,24,26,28,30,32),(33,35,37,39,41,43,45,47),(34,36,38,40,42,44,46,48),(49,59,53,63,57,51,61,55),(50,60,54,64,58,52,62,56)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,24,13,28,9,32,5,20),(2,23,14,27,10,31,6,19),(3,22,15,26,11,30,7,18),(4,21,16,25,12,29,8,17),(33,53,37,49,41,61,45,57),(34,52,38,64,42,60,46,56),(35,51,39,63,43,59,47,55),(36,50,40,62,44,58,48,54)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F8A···8H8I···8P16A···16P
order1222224444448···88···816···16
size1111221111222···28···82···2

44 irreducible representations

dim111112222222
type+++++-++--
imageC1C2C2C2C4D4Q8D4D8Q16Q16C8.4Q8
kernelC2×C8.4Q8C8.4Q8C2×C8.C4C22×C16C2×C16C2×C8C2×C8C22×C4C2×C4C2×C4C23C2
# reps1421812142216

Matrix representation of C2×C8.4Q8 in GL3(𝔽17) generated by

1600
010
001
,
1600
090
0415
,
100
050
077
,
1300
072
0310
G:=sub<GL(3,GF(17))| [16,0,0,0,1,0,0,0,1],[16,0,0,0,9,4,0,0,15],[1,0,0,0,5,7,0,0,7],[13,0,0,0,7,3,0,2,10] >;

C2×C8.4Q8 in GAP, Magma, Sage, TeX

C_2\times C_8._4Q_8
% in TeX

G:=Group("C2xC8.4Q8");
// GroupNames label

G:=SmallGroup(128,892);
// by ID

G=gap.SmallGroup(128,892);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,288,1123,360,172,4037,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=1,c^4=b^2,d^2=b*c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^3,d*c*d^-1=b^6*c^3>;
// generators/relations

׿
×
𝔽