extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×SD16)⋊1C2 = C42.225D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):1C2 | 128,1837 |
(C4×SD16)⋊2C2 = C42.450D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):2C2 | 128,1838 |
(C4×SD16)⋊3C2 = C42.451D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):3C2 | 128,1839 |
(C4×SD16)⋊4C2 = C42.226D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):4C2 | 128,1840 |
(C4×SD16)⋊5C2 = C42.352C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):5C2 | 128,1850 |
(C4×SD16)⋊6C2 = C42.353C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):6C2 | 128,1851 |
(C4×SD16)⋊7C2 = C42.354C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):7C2 | 128,1852 |
(C4×SD16)⋊8C2 = C42.355C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):8C2 | 128,1853 |
(C4×SD16)⋊9C2 = SD16⋊10D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):9C2 | 128,2014 |
(C4×SD16)⋊10C2 = C42.486C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):10C2 | 128,2069 |
(C4×SD16)⋊11C2 = C4×C8⋊C22 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):11C2 | 128,1676 |
(C4×SD16)⋊12C2 = C4×C8.C22 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):12C2 | 128,1677 |
(C4×SD16)⋊13C2 = C42.275C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):13C2 | 128,1678 |
(C4×SD16)⋊14C2 = C42.276C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):14C2 | 128,1679 |
(C4×SD16)⋊15C2 = C42.255D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):15C2 | 128,1903 |
(C4×SD16)⋊16C2 = C42.256D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):16C2 | 128,1904 |
(C4×SD16)⋊17C2 = C42.390C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):17C2 | 128,1910 |
(C4×SD16)⋊18C2 = C42.391C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):18C2 | 128,1911 |
(C4×SD16)⋊19C2 = SD16⋊1D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):19C2 | 128,2006 |
(C4×SD16)⋊20C2 = SD16⋊2D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):20C2 | 128,2007 |
(C4×SD16)⋊21C2 = SD16⋊3D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):21C2 | 128,2008 |
(C4×SD16)⋊22C2 = C42.492C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):22C2 | 128,2083 |
(C4×SD16)⋊23C2 = C42.494C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):23C2 | 128,2085 |
(C4×SD16)⋊24C2 = C42.498C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):24C2 | 128,2089 |
(C4×SD16)⋊25C2 = C42.74C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):25C2 | 128,2131 |
(C4×SD16)⋊26C2 = C42.531C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):26C2 | 128,2133 |
(C4×SD16)⋊27C2 = C42.222D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):27C2 | 128,1833 |
(C4×SD16)⋊28C2 = C42.384D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):28C2 | 128,1834 |
(C4×SD16)⋊29C2 = C42.223D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):29C2 | 128,1835 |
(C4×SD16)⋊30C2 = C42.357C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):30C2 | 128,1855 |
(C4×SD16)⋊31C2 = C42.359C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):31C2 | 128,1857 |
(C4×SD16)⋊32C2 = C42.360C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):32C2 | 128,1858 |
(C4×SD16)⋊33C2 = C42.365D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):33C2 | 128,1899 |
(C4×SD16)⋊34C2 = C42.308D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):34C2 | 128,1900 |
(C4×SD16)⋊35C2 = D4×SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):35C2 | 128,2013 |
(C4×SD16)⋊36C2 = SD16⋊11D4 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):36C2 | 128,2016 |
(C4×SD16)⋊37C2 = D4⋊7SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):37C2 | 128,2027 |
(C4×SD16)⋊38C2 = C42.461C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):38C2 | 128,2028 |
(C4×SD16)⋊39C2 = D4⋊8SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):39C2 | 128,2030 |
(C4×SD16)⋊40C2 = C42.466C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):40C2 | 128,2033 |
(C4×SD16)⋊41C2 = C42.467C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):41C2 | 128,2034 |
(C4×SD16)⋊42C2 = C42.470C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):42C2 | 128,2037 |
(C4×SD16)⋊43C2 = D4⋊9SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):43C2 | 128,2067 |
(C4×SD16)⋊44C2 = C42.489C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):44C2 | 128,2072 |
(C4×SD16)⋊45C2 = C42.501C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):45C2 | 128,2092 |
(C4×SD16)⋊46C2 = C42.502C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):46C2 | 128,2093 |
(C4×SD16)⋊47C2 = Q8⋊8SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):47C2 | 128,2094 |
(C4×SD16)⋊48C2 = C42.506C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):48C2 | 128,2097 |
(C4×SD16)⋊49C2 = Q8⋊9SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):49C2 | 128,2124 |
(C4×SD16)⋊50C2 = C42.528C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):50C2 | 128,2126 |
(C4×SD16)⋊51C2 = C42.278C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):51C2 | 128,1681 |
(C4×SD16)⋊52C2 = C42.281C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):52C2 | 128,1684 |
(C4×SD16)⋊53C2 = C42.385C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):53C2 | 128,1905 |
(C4×SD16)⋊54C2 = C42.386C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):54C2 | 128,1906 |
(C4×SD16)⋊55C2 = C42.472C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):55C2 | 128,2055 |
(C4×SD16)⋊56C2 = C42.473C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 32 | | (C4xSD16):56C2 | 128,2056 |
(C4×SD16)⋊57C2 = C42.475C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):57C2 | 128,2058 |
(C4×SD16)⋊58C2 = C42.478C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):58C2 | 128,2061 |
(C4×SD16)⋊59C2 = C42.480C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):59C2 | 128,2063 |
(C4×SD16)⋊60C2 = C42.481C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):60C2 | 128,2064 |
(C4×SD16)⋊61C2 = C42.509C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):61C2 | 128,2100 |
(C4×SD16)⋊62C2 = C42.512C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):62C2 | 128,2103 |
(C4×SD16)⋊63C2 = C42.514C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):63C2 | 128,2105 |
(C4×SD16)⋊64C2 = C42.517C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16):64C2 | 128,2108 |
(C4×SD16)⋊65C2 = C4×C4○D8 | φ: trivial image | 64 | | (C4xSD16):65C2 | 128,1671 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×SD16).1C2 = D4.M4(2) | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).1C2 | 128,317 |
(C4×SD16).2C2 = Q8⋊2M4(2) | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).2C2 | 128,320 |
(C4×SD16).3C2 = SD16⋊C8 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).3C2 | 128,310 |
(C4×SD16).4C2 = C8⋊M4(2) | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).4C2 | 128,324 |
(C4×SD16).5C2 = SD16⋊Q8 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).5C2 | 128,2117 |
(C4×SD16).6C2 = SD16⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).6C2 | 128,2118 |
(C4×SD16).7C2 = SD16⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).7C2 | 128,2120 |
(C4×SD16).8C2 = C42.73C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).8C2 | 128,2130 |
(C4×SD16).9C2 = C8⋊12SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).9C2 | 128,314 |
(C4×SD16).10C2 = C8⋊15SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).10C2 | 128,315 |
(C4×SD16).11C2 = C8⋊9SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).11C2 | 128,322 |
(C4×SD16).12C2 = Q8⋊7SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).12C2 | 128,2091 |
(C4×SD16).13C2 = C42.505C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).13C2 | 128,2096 |
(C4×SD16).14C2 = Q8×SD16 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).14C2 | 128,2111 |
(C4×SD16).15C2 = SD16⋊4Q8 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).15C2 | 128,2113 |
(C4×SD16).16C2 = C42.510C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).16C2 | 128,2101 |
(C4×SD16).17C2 = C42.513C23 | φ: C2/C1 → C2 ⊆ Out C4×SD16 | 64 | | (C4xSD16).17C2 | 128,2104 |
(C4×SD16).18C2 = C8×SD16 | φ: trivial image | 64 | | (C4xSD16).18C2 | 128,308 |