Extensions 1→N→G→Q→1 with N=C4xSD16 and Q=C2

Direct product G=NxQ with N=C4xSD16 and Q=C2
dρLabelID
C2xC4xSD1664C2xC4xSD16128,1669

Semidirect products G=N:Q with N=C4xSD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xSD16):1C2 = C42.225D4φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):1C2128,1837
(C4xSD16):2C2 = C42.450D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):2C2128,1838
(C4xSD16):3C2 = C42.451D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):3C2128,1839
(C4xSD16):4C2 = C42.226D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):4C2128,1840
(C4xSD16):5C2 = C42.352C23φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):5C2128,1850
(C4xSD16):6C2 = C42.353C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):6C2128,1851
(C4xSD16):7C2 = C42.354C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):7C2128,1852
(C4xSD16):8C2 = C42.355C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):8C2128,1853
(C4xSD16):9C2 = SD16:10D4φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):9C2128,2014
(C4xSD16):10C2 = C42.486C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):10C2128,2069
(C4xSD16):11C2 = C4xC8:C22φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):11C2128,1676
(C4xSD16):12C2 = C4xC8.C22φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):12C2128,1677
(C4xSD16):13C2 = C42.275C23φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):13C2128,1678
(C4xSD16):14C2 = C42.276C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):14C2128,1679
(C4xSD16):15C2 = C42.255D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):15C2128,1903
(C4xSD16):16C2 = C42.256D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):16C2128,1904
(C4xSD16):17C2 = C42.390C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):17C2128,1910
(C4xSD16):18C2 = C42.391C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):18C2128,1911
(C4xSD16):19C2 = SD16:1D4φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):19C2128,2006
(C4xSD16):20C2 = SD16:2D4φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):20C2128,2007
(C4xSD16):21C2 = SD16:3D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):21C2128,2008
(C4xSD16):22C2 = C42.492C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):22C2128,2083
(C4xSD16):23C2 = C42.494C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):23C2128,2085
(C4xSD16):24C2 = C42.498C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):24C2128,2089
(C4xSD16):25C2 = C42.74C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):25C2128,2131
(C4xSD16):26C2 = C42.531C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):26C2128,2133
(C4xSD16):27C2 = C42.222D4φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):27C2128,1833
(C4xSD16):28C2 = C42.384D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):28C2128,1834
(C4xSD16):29C2 = C42.223D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):29C2128,1835
(C4xSD16):30C2 = C42.357C23φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):30C2128,1855
(C4xSD16):31C2 = C42.359C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):31C2128,1857
(C4xSD16):32C2 = C42.360C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):32C2128,1858
(C4xSD16):33C2 = C42.365D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):33C2128,1899
(C4xSD16):34C2 = C42.308D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):34C2128,1900
(C4xSD16):35C2 = D4xSD16φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):35C2128,2013
(C4xSD16):36C2 = SD16:11D4φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):36C2128,2016
(C4xSD16):37C2 = D4:7SD16φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):37C2128,2027
(C4xSD16):38C2 = C42.461C23φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):38C2128,2028
(C4xSD16):39C2 = D4:8SD16φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):39C2128,2030
(C4xSD16):40C2 = C42.466C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):40C2128,2033
(C4xSD16):41C2 = C42.467C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):41C2128,2034
(C4xSD16):42C2 = C42.470C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):42C2128,2037
(C4xSD16):43C2 = D4:9SD16φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):43C2128,2067
(C4xSD16):44C2 = C42.489C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):44C2128,2072
(C4xSD16):45C2 = C42.501C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):45C2128,2092
(C4xSD16):46C2 = C42.502C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):46C2128,2093
(C4xSD16):47C2 = Q8:8SD16φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):47C2128,2094
(C4xSD16):48C2 = C42.506C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):48C2128,2097
(C4xSD16):49C2 = Q8:9SD16φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):49C2128,2124
(C4xSD16):50C2 = C42.528C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):50C2128,2126
(C4xSD16):51C2 = C42.278C23φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):51C2128,1681
(C4xSD16):52C2 = C42.281C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):52C2128,1684
(C4xSD16):53C2 = C42.385C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):53C2128,1905
(C4xSD16):54C2 = C42.386C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):54C2128,1906
(C4xSD16):55C2 = C42.472C23φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):55C2128,2055
(C4xSD16):56C2 = C42.473C23φ: C2/C1C2 ⊆ Out C4xSD1632(C4xSD16):56C2128,2056
(C4xSD16):57C2 = C42.475C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):57C2128,2058
(C4xSD16):58C2 = C42.478C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):58C2128,2061
(C4xSD16):59C2 = C42.480C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):59C2128,2063
(C4xSD16):60C2 = C42.481C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):60C2128,2064
(C4xSD16):61C2 = C42.509C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):61C2128,2100
(C4xSD16):62C2 = C42.512C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):62C2128,2103
(C4xSD16):63C2 = C42.514C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):63C2128,2105
(C4xSD16):64C2 = C42.517C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16):64C2128,2108
(C4xSD16):65C2 = C4xC4oD8φ: trivial image64(C4xSD16):65C2128,1671

Non-split extensions G=N.Q with N=C4xSD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xSD16).1C2 = D4.M4(2)φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).1C2128,317
(C4xSD16).2C2 = Q8:2M4(2)φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).2C2128,320
(C4xSD16).3C2 = SD16:C8φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).3C2128,310
(C4xSD16).4C2 = C8:M4(2)φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).4C2128,324
(C4xSD16).5C2 = SD16:Q8φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).5C2128,2117
(C4xSD16).6C2 = SD16:2Q8φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).6C2128,2118
(C4xSD16).7C2 = SD16:3Q8φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).7C2128,2120
(C4xSD16).8C2 = C42.73C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).8C2128,2130
(C4xSD16).9C2 = C8:12SD16φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).9C2128,314
(C4xSD16).10C2 = C8:15SD16φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).10C2128,315
(C4xSD16).11C2 = C8:9SD16φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).11C2128,322
(C4xSD16).12C2 = Q8:7SD16φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).12C2128,2091
(C4xSD16).13C2 = C42.505C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).13C2128,2096
(C4xSD16).14C2 = Q8xSD16φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).14C2128,2111
(C4xSD16).15C2 = SD16:4Q8φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).15C2128,2113
(C4xSD16).16C2 = C42.510C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).16C2128,2101
(C4xSD16).17C2 = C42.513C23φ: C2/C1C2 ⊆ Out C4xSD1664(C4xSD16).17C2128,2104
(C4xSD16).18C2 = C8xSD16φ: trivial image64(C4xSD16).18C2128,308

׿
x
:
Z
F
o
wr
Q
<