Extensions 1→N→G→Q→1 with N=C4×SD16 and Q=C2

Direct product G=N×Q with N=C4×SD16 and Q=C2
dρLabelID
C2×C4×SD1664C2xC4xSD16128,1669

Semidirect products G=N:Q with N=C4×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×SD16)⋊1C2 = C42.225D4φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):1C2128,1837
(C4×SD16)⋊2C2 = C42.450D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):2C2128,1838
(C4×SD16)⋊3C2 = C42.451D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):3C2128,1839
(C4×SD16)⋊4C2 = C42.226D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):4C2128,1840
(C4×SD16)⋊5C2 = C42.352C23φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):5C2128,1850
(C4×SD16)⋊6C2 = C42.353C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):6C2128,1851
(C4×SD16)⋊7C2 = C42.354C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):7C2128,1852
(C4×SD16)⋊8C2 = C42.355C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):8C2128,1853
(C4×SD16)⋊9C2 = SD1610D4φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):9C2128,2014
(C4×SD16)⋊10C2 = C42.486C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):10C2128,2069
(C4×SD16)⋊11C2 = C4×C8⋊C22φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):11C2128,1676
(C4×SD16)⋊12C2 = C4×C8.C22φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):12C2128,1677
(C4×SD16)⋊13C2 = C42.275C23φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):13C2128,1678
(C4×SD16)⋊14C2 = C42.276C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):14C2128,1679
(C4×SD16)⋊15C2 = C42.255D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):15C2128,1903
(C4×SD16)⋊16C2 = C42.256D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):16C2128,1904
(C4×SD16)⋊17C2 = C42.390C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):17C2128,1910
(C4×SD16)⋊18C2 = C42.391C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):18C2128,1911
(C4×SD16)⋊19C2 = SD161D4φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):19C2128,2006
(C4×SD16)⋊20C2 = SD162D4φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):20C2128,2007
(C4×SD16)⋊21C2 = SD163D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):21C2128,2008
(C4×SD16)⋊22C2 = C42.492C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):22C2128,2083
(C4×SD16)⋊23C2 = C42.494C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):23C2128,2085
(C4×SD16)⋊24C2 = C42.498C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):24C2128,2089
(C4×SD16)⋊25C2 = C42.74C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):25C2128,2131
(C4×SD16)⋊26C2 = C42.531C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):26C2128,2133
(C4×SD16)⋊27C2 = C42.222D4φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):27C2128,1833
(C4×SD16)⋊28C2 = C42.384D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):28C2128,1834
(C4×SD16)⋊29C2 = C42.223D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):29C2128,1835
(C4×SD16)⋊30C2 = C42.357C23φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):30C2128,1855
(C4×SD16)⋊31C2 = C42.359C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):31C2128,1857
(C4×SD16)⋊32C2 = C42.360C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):32C2128,1858
(C4×SD16)⋊33C2 = C42.365D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):33C2128,1899
(C4×SD16)⋊34C2 = C42.308D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):34C2128,1900
(C4×SD16)⋊35C2 = D4×SD16φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):35C2128,2013
(C4×SD16)⋊36C2 = SD1611D4φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):36C2128,2016
(C4×SD16)⋊37C2 = D47SD16φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):37C2128,2027
(C4×SD16)⋊38C2 = C42.461C23φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):38C2128,2028
(C4×SD16)⋊39C2 = D48SD16φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):39C2128,2030
(C4×SD16)⋊40C2 = C42.466C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):40C2128,2033
(C4×SD16)⋊41C2 = C42.467C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):41C2128,2034
(C4×SD16)⋊42C2 = C42.470C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):42C2128,2037
(C4×SD16)⋊43C2 = D49SD16φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):43C2128,2067
(C4×SD16)⋊44C2 = C42.489C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):44C2128,2072
(C4×SD16)⋊45C2 = C42.501C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):45C2128,2092
(C4×SD16)⋊46C2 = C42.502C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):46C2128,2093
(C4×SD16)⋊47C2 = Q88SD16φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):47C2128,2094
(C4×SD16)⋊48C2 = C42.506C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):48C2128,2097
(C4×SD16)⋊49C2 = Q89SD16φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):49C2128,2124
(C4×SD16)⋊50C2 = C42.528C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):50C2128,2126
(C4×SD16)⋊51C2 = C42.278C23φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):51C2128,1681
(C4×SD16)⋊52C2 = C42.281C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):52C2128,1684
(C4×SD16)⋊53C2 = C42.385C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):53C2128,1905
(C4×SD16)⋊54C2 = C42.386C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):54C2128,1906
(C4×SD16)⋊55C2 = C42.472C23φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):55C2128,2055
(C4×SD16)⋊56C2 = C42.473C23φ: C2/C1C2 ⊆ Out C4×SD1632(C4xSD16):56C2128,2056
(C4×SD16)⋊57C2 = C42.475C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):57C2128,2058
(C4×SD16)⋊58C2 = C42.478C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):58C2128,2061
(C4×SD16)⋊59C2 = C42.480C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):59C2128,2063
(C4×SD16)⋊60C2 = C42.481C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):60C2128,2064
(C4×SD16)⋊61C2 = C42.509C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):61C2128,2100
(C4×SD16)⋊62C2 = C42.512C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):62C2128,2103
(C4×SD16)⋊63C2 = C42.514C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):63C2128,2105
(C4×SD16)⋊64C2 = C42.517C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16):64C2128,2108
(C4×SD16)⋊65C2 = C4×C4○D8φ: trivial image64(C4xSD16):65C2128,1671

Non-split extensions G=N.Q with N=C4×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×SD16).1C2 = D4.M4(2)φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).1C2128,317
(C4×SD16).2C2 = Q82M4(2)φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).2C2128,320
(C4×SD16).3C2 = SD16⋊C8φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).3C2128,310
(C4×SD16).4C2 = C8⋊M4(2)φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).4C2128,324
(C4×SD16).5C2 = SD16⋊Q8φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).5C2128,2117
(C4×SD16).6C2 = SD162Q8φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).6C2128,2118
(C4×SD16).7C2 = SD163Q8φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).7C2128,2120
(C4×SD16).8C2 = C42.73C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).8C2128,2130
(C4×SD16).9C2 = C812SD16φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).9C2128,314
(C4×SD16).10C2 = C815SD16φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).10C2128,315
(C4×SD16).11C2 = C89SD16φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).11C2128,322
(C4×SD16).12C2 = Q87SD16φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).12C2128,2091
(C4×SD16).13C2 = C42.505C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).13C2128,2096
(C4×SD16).14C2 = Q8×SD16φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).14C2128,2111
(C4×SD16).15C2 = SD164Q8φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).15C2128,2113
(C4×SD16).16C2 = C42.510C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).16C2128,2101
(C4×SD16).17C2 = C42.513C23φ: C2/C1C2 ⊆ Out C4×SD1664(C4xSD16).17C2128,2104
(C4×SD16).18C2 = C8×SD16φ: trivial image64(C4xSD16).18C2128,308

׿
×
𝔽