p-group, metabelian, nilpotent (class 3), monomial
Aliases: SD16⋊11D4, C42.451C23, C4.1382+ 1+4, C2.68D42, C4⋊C4○2SD16, (C8×D4)⋊13C2, C4⋊3(C4○D8), C8⋊8D4⋊8C2, C8.85(C2×D4), D4⋊D4⋊7C2, D4⋊6D4⋊6C2, C4⋊D8⋊12C2, C8⋊5D4⋊27C2, C4⋊C4.406D4, Q8⋊6D4⋊5C2, D4.30(C2×D4), Q8.27(C2×D4), C4⋊2Q16⋊12C2, (C4×SD16)⋊36C2, (C2×D4).230D4, D4.7D4⋊7C2, C22⋊C4.95D4, C4.98(C22×D4), C4⋊C8.294C22, C4⋊C4.223C23, (C2×C4).482C24, (C2×C8).602C23, (C4×C8).271C22, C23.104(C2×D4), C4⋊Q8.138C22, C2.65(D4○SD16), (C2×D4).216C23, (C4×D4).325C22, (C2×D8).136C22, C4⋊1D4.79C22, C4⋊D4.67C22, (C4×Q8).143C22, (C2×Q8).203C23, C4.Q8.165C22, C22⋊Q8.66C22, D4⋊C4.10C22, C22⋊C8.199C22, (C22×C8).193C22, (C2×Q16).131C22, (C2×SD16).94C22, C22.742(C22×D4), (C22×C4).1126C23, Q8⋊C4.178C22, C4⋊C4○(C2×SD16), (C2×C4○D8)⋊12C2, C2.55(C2×C4○D8), (C2×C4).920(C2×D4), (C2×C4○D4).193C22, SmallGroup(128,2016)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for SD16⋊11D4
G = < a,b,c,d | a8=b2=c4=d2=1, bab=a3, ac=ca, ad=da, bc=cb, dbd=a4b, dcd=c-1 >
Subgroups: 512 in 247 conjugacy classes, 96 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, D8, SD16, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4×C8, C22⋊C8, D4⋊C4, D4⋊C4, Q8⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2×C4⋊C4, C4×D4, C4×D4, C4×Q8, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4⋊1D4, C4⋊1D4, C4⋊Q8, C22×C8, C2×D8, C2×SD16, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C8×D4, C4×SD16, D4⋊D4, D4.7D4, C4⋊D8, C4⋊2Q16, C8⋊8D4, C8⋊5D4, D4⋊6D4, Q8⋊6D4, C2×C4○D8, SD16⋊11D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C4○D8, C22×D4, 2+ 1+4, D42, C2×C4○D8, D4○SD16, SD16⋊11D4
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 25)(2 28)(3 31)(4 26)(5 29)(6 32)(7 27)(8 30)(9 39)(10 34)(11 37)(12 40)(13 35)(14 38)(15 33)(16 36)(17 49)(18 52)(19 55)(20 50)(21 53)(22 56)(23 51)(24 54)(41 63)(42 58)(43 61)(44 64)(45 59)(46 62)(47 57)(48 60)
(1 12 23 62)(2 13 24 63)(3 14 17 64)(4 15 18 57)(5 16 19 58)(6 9 20 59)(7 10 21 60)(8 11 22 61)(25 40 51 46)(26 33 52 47)(27 34 53 48)(28 35 54 41)(29 36 55 42)(30 37 56 43)(31 38 49 44)(32 39 50 45)
(1 30)(2 31)(3 32)(4 25)(5 26)(6 27)(7 28)(8 29)(9 48)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 56)(24 49)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 57)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25)(2,28)(3,31)(4,26)(5,29)(6,32)(7,27)(8,30)(9,39)(10,34)(11,37)(12,40)(13,35)(14,38)(15,33)(16,36)(17,49)(18,52)(19,55)(20,50)(21,53)(22,56)(23,51)(24,54)(41,63)(42,58)(43,61)(44,64)(45,59)(46,62)(47,57)(48,60), (1,12,23,62)(2,13,24,63)(3,14,17,64)(4,15,18,57)(5,16,19,58)(6,9,20,59)(7,10,21,60)(8,11,22,61)(25,40,51,46)(26,33,52,47)(27,34,53,48)(28,35,54,41)(29,36,55,42)(30,37,56,43)(31,38,49,44)(32,39,50,45), (1,30)(2,31)(3,32)(4,25)(5,26)(6,27)(7,28)(8,29)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,49)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25)(2,28)(3,31)(4,26)(5,29)(6,32)(7,27)(8,30)(9,39)(10,34)(11,37)(12,40)(13,35)(14,38)(15,33)(16,36)(17,49)(18,52)(19,55)(20,50)(21,53)(22,56)(23,51)(24,54)(41,63)(42,58)(43,61)(44,64)(45,59)(46,62)(47,57)(48,60), (1,12,23,62)(2,13,24,63)(3,14,17,64)(4,15,18,57)(5,16,19,58)(6,9,20,59)(7,10,21,60)(8,11,22,61)(25,40,51,46)(26,33,52,47)(27,34,53,48)(28,35,54,41)(29,36,55,42)(30,37,56,43)(31,38,49,44)(32,39,50,45), (1,30)(2,31)(3,32)(4,25)(5,26)(6,27)(7,28)(8,29)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,49)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,25),(2,28),(3,31),(4,26),(5,29),(6,32),(7,27),(8,30),(9,39),(10,34),(11,37),(12,40),(13,35),(14,38),(15,33),(16,36),(17,49),(18,52),(19,55),(20,50),(21,53),(22,56),(23,51),(24,54),(41,63),(42,58),(43,61),(44,64),(45,59),(46,62),(47,57),(48,60)], [(1,12,23,62),(2,13,24,63),(3,14,17,64),(4,15,18,57),(5,16,19,58),(6,9,20,59),(7,10,21,60),(8,11,22,61),(25,40,51,46),(26,33,52,47),(27,34,53,48),(28,35,54,41),(29,36,55,42),(30,37,56,43),(31,38,49,44),(32,39,50,45)], [(1,30),(2,31),(3,32),(4,25),(5,26),(6,27),(7,28),(8,29),(9,48),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,56),(24,49),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,57)]])
35 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 8A | 8B | 8C | 8D | 8E | ··· | 8J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
35 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | C4○D8 | 2+ 1+4 | D4○SD16 |
kernel | SD16⋊11D4 | C8×D4 | C4×SD16 | D4⋊D4 | D4.7D4 | C4⋊D8 | C4⋊2Q16 | C8⋊8D4 | C8⋊5D4 | D4⋊6D4 | Q8⋊6D4 | C2×C4○D8 | C22⋊C4 | C4⋊C4 | SD16 | C2×D4 | C4 | C4 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 4 | 1 | 8 | 1 | 2 |
Matrix representation of SD16⋊11D4 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 5 | 12 |
0 | 0 | 5 | 5 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 3 | 3 |
0 | 0 | 3 | 14 |
1 | 2 | 0 | 0 |
16 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
16 | 16 | 0 | 0 |
0 | 0 | 0 | 13 |
0 | 0 | 4 | 0 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,5,5,0,0,12,5],[16,0,0,0,0,16,0,0,0,0,3,3,0,0,3,14],[1,16,0,0,2,16,0,0,0,0,16,0,0,0,0,16],[1,16,0,0,0,16,0,0,0,0,0,4,0,0,13,0] >;
SD16⋊11D4 in GAP, Magma, Sage, TeX
{\rm SD}_{16}\rtimes_{11}D_4
% in TeX
G:=Group("SD16:11D4");
// GroupNames label
G:=SmallGroup(128,2016);
// by ID
G=gap.SmallGroup(128,2016);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,456,758,352,2019,346,2804,1411,375,172]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=a^3,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations