p-group, metabelian, nilpotent (class 3), monomial
Aliases: SD16⋊2D4, C42.442C23, C4.1292+ 1+4, C2.59D42, C8.7(C2×D4), C8⋊6D4⋊6C2, D4⋊5D4⋊5C2, C8⋊2D4⋊22C2, C4⋊C8⋊31C22, C4⋊C4.151D4, (C4×C8)⋊32C22, Q8⋊5D4⋊4C2, D4.24(C2×D4), Q8.22(C2×D4), D4⋊D4⋊39C2, Q8⋊D4⋊18C2, (C4×SD16)⋊20C2, (C2×D4).165D4, C8.D4⋊21C2, (C2×C8).90C23, (C4×Q8)⋊21C22, C4.89(C22×D4), C4.Q8⋊53C22, D4.2D4⋊39C2, C22⋊SD16⋊19C2, D4.7D4⋊39C2, C8.12D4⋊22C2, C4⋊C4.214C23, C4⋊D4⋊11C22, C22⋊C8⋊27C22, (C2×C4).473C24, Q8.D4⋊38C2, C22⋊C4.161D4, (C2×Q16)⋊29C22, (C2×D8).81C22, C23.315(C2×D4), D4⋊C4⋊39C22, C2.61(D4○SD16), Q8⋊C4⋊84C22, (C2×SD16)⋊47C22, (C2×D4).212C23, (C4×D4).147C22, C4.4D4⋊14C22, (C2×Q8).196C23, (C22×Q8)⋊24C22, C22⋊Q8.60C22, (C2×M4(2))⋊25C22, (C22×C4).323C23, C22.733(C22×D4), C2.80(D8⋊C22), (C22×D4).401C22, (C2×C8⋊C22)⋊33C2, (C2×C4).157(C2×D4), (C2×C8.C22)⋊30C2, (C2×C4○D4).188C22, SmallGroup(128,2007)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for SD16⋊2D4
G = < a,b,c,d | a8=b2=c4=d2=1, bab=a3, ac=ca, dad=a5, cbc-1=dbd=a4b, dcd=c-1 >
Subgroups: 544 in 249 conjugacy classes, 94 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), D8, SD16, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C4×C8, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2×C22⋊C4, C4×D4, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C2×M4(2), C2×D8, C2×SD16, C2×Q16, C8⋊C22, C8.C22, C22×D4, C22×Q8, C2×C4○D4, C8⋊6D4, C4×SD16, Q8⋊D4, D4⋊D4, C22⋊SD16, D4.7D4, D4.2D4, Q8.D4, C8⋊2D4, C8.D4, C8.12D4, D4⋊5D4, Q8⋊5D4, C2×C8⋊C22, C2×C8.C22, SD16⋊2D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, D42, D8⋊C22, D4○SD16, SD16⋊2D4
Character table of SD16⋊2D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ22 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊C22 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊C22 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | -2√-2 | 0 | 0 | complex lifted from D4○SD16 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 2√-2 | 0 | 0 | complex lifted from D4○SD16 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 23)(2 18)(3 21)(4 24)(5 19)(6 22)(7 17)(8 20)(9 25)(10 28)(11 31)(12 26)(13 29)(14 32)(15 27)(16 30)
(1 10 23 32)(2 11 24 25)(3 12 17 26)(4 13 18 27)(5 14 19 28)(6 15 20 29)(7 16 21 30)(8 9 22 31)
(1 32)(2 29)(3 26)(4 31)(5 28)(6 25)(7 30)(8 27)(9 18)(10 23)(11 20)(12 17)(13 22)(14 19)(15 24)(16 21)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23)(2,18)(3,21)(4,24)(5,19)(6,22)(7,17)(8,20)(9,25)(10,28)(11,31)(12,26)(13,29)(14,32)(15,27)(16,30), (1,10,23,32)(2,11,24,25)(3,12,17,26)(4,13,18,27)(5,14,19,28)(6,15,20,29)(7,16,21,30)(8,9,22,31), (1,32)(2,29)(3,26)(4,31)(5,28)(6,25)(7,30)(8,27)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,23)(2,18)(3,21)(4,24)(5,19)(6,22)(7,17)(8,20)(9,25)(10,28)(11,31)(12,26)(13,29)(14,32)(15,27)(16,30), (1,10,23,32)(2,11,24,25)(3,12,17,26)(4,13,18,27)(5,14,19,28)(6,15,20,29)(7,16,21,30)(8,9,22,31), (1,32)(2,29)(3,26)(4,31)(5,28)(6,25)(7,30)(8,27)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,23),(2,18),(3,21),(4,24),(5,19),(6,22),(7,17),(8,20),(9,25),(10,28),(11,31),(12,26),(13,29),(14,32),(15,27),(16,30)], [(1,10,23,32),(2,11,24,25),(3,12,17,26),(4,13,18,27),(5,14,19,28),(6,15,20,29),(7,16,21,30),(8,9,22,31)], [(1,32),(2,29),(3,26),(4,31),(5,28),(6,25),(7,30),(8,27),(9,18),(10,23),(11,20),(12,17),(13,22),(14,19),(15,24),(16,21)]])
Matrix representation of SD16⋊2D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 | 1 | 2 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 16 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 16 | 1 | 2 |
0 | 0 | 1 | 0 | 0 | 16 |
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 13 | 9 |
0 | 0 | 0 | 13 | 4 | 4 |
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 13 | 13 | 4 | 8 |
0 | 0 | 4 | 0 | 13 | 13 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,16,0,0,0,16,1,16,0,0,1,1,0,1,0,0,0,2,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,16,1,0,0,0,16,16,0,0,0,0,0,1,0,0,0,0,0,2,16],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,4,4,0,0,0,13,0,4,13,0,0,0,0,13,4,0,0,0,0,9,4],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,4,13,4,0,0,13,0,13,0,0,0,0,0,4,13,0,0,0,0,8,13] >;
SD16⋊2D4 in GAP, Magma, Sage, TeX
{\rm SD}_{16}\rtimes_2D_4
% in TeX
G:=Group("SD16:2D4");
// GroupNames label
G:=SmallGroup(128,2007);
// by ID
G=gap.SmallGroup(128,2007);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,456,758,723,346,2804,1411,375,172]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=a^3,a*c=c*a,d*a*d=a^5,c*b*c^-1=d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations
Export