extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D4)⋊1C4 = C42.375D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 32 | | (C4xD4):1C4 | 128,232 |
(C4×D4)⋊2C4 = C42.403D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 32 | | (C4xD4):2C4 | 128,234 |
(C4×D4)⋊3C4 = C42.55D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 32 | | (C4xD4):3C4 | 128,237 |
(C4×D4)⋊4C4 = C42.57D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 32 | | (C4xD4):4C4 | 128,241 |
(C4×D4)⋊5C4 = C42.58D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 32 | | (C4xD4):5C4 | 128,244 |
(C4×D4)⋊6C4 = C42.59D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 32 | | (C4xD4):6C4 | 128,246 |
(C4×D4)⋊7C4 = C42.61D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 32 | | (C4xD4):7C4 | 128,249 |
(C4×D4)⋊8C4 = C42.63D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 32 | | (C4xD4):8C4 | 128,253 |
(C4×D4)⋊9C4 = C4×C4≀C2 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):9C4 | 128,490 |
(C4×D4)⋊10C4 = D4.C42 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):10C4 | 128,491 |
(C4×D4)⋊11C4 = C4×D4⋊C4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):11C4 | 128,492 |
(C4×D4)⋊12C4 = D4⋊C42 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):12C4 | 128,494 |
(C4×D4)⋊13C4 = C42.98D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):13C4 | 128,534 |
(C4×D4)⋊14C4 = C42.100D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):14C4 | 128,536 |
(C4×D4)⋊15C4 = C42.102D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4):15C4 | 128,538 |
(C4×D4)⋊16C4 = D4⋊4C42 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):16C4 | 128,1007 |
(C4×D4)⋊17C4 = C42⋊42D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):17C4 | 128,1022 |
(C4×D4)⋊18C4 = C43⋊9C2 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):18C4 | 128,1025 |
(C4×D4)⋊19C4 = C24.547C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):19C4 | 128,1050 |
(C4×D4)⋊20C4 = C23.201C24 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):20C4 | 128,1051 |
(C4×D4)⋊21C4 = D4×C4⋊C4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):21C4 | 128,1080 |
(C4×D4)⋊22C4 = C23.231C24 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):22C4 | 128,1081 |
(C4×D4)⋊23C4 = C23.234C24 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):23C4 | 128,1084 |
(C4×D4)⋊24C4 = C23.235C24 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):24C4 | 128,1085 |
(C4×D4)⋊25C4 = C23.236C24 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):25C4 | 128,1086 |
(C4×D4)⋊26C4 = C24.212C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4):26C4 | 128,1089 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D4).1C4 = C8.31D8 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 64 | | (C4xD4).1C4 | 128,62 |
(C4×D4).2C4 = C42.66D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 64 | | (C4xD4).2C4 | 128,256 |
(C4×D4).3C4 = C42.376D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 64 | | (C4xD4).3C4 | 128,261 |
(C4×D4).4C4 = C42.69D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 64 | | (C4xD4).4C4 | 128,264 |
(C4×D4).5C4 = C42.72D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 64 | | (C4xD4).5C4 | 128,267 |
(C4×D4).6C4 = C42.409D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 64 | | (C4xD4).6C4 | 128,272 |
(C4×D4).7C4 = C42.78D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 64 | | (C4xD4).7C4 | 128,279 |
(C4×D4).8C4 = C42.417D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 64 | | (C4xD4).8C4 | 128,285 |
(C4×D4).9C4 = C42.84D4 | φ: C4/C1 → C4 ⊆ Out C4×D4 | 64 | | (C4xD4).9C4 | 128,289 |
(C4×D4).10C4 = D4⋊C16 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).10C4 | 128,61 |
(C4×D4).11C4 = C2×D4⋊C8 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).11C4 | 128,206 |
(C4×D4).12C4 = C42.455D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).12C4 | 128,208 |
(C4×D4).13C4 = C42.397D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).13C4 | 128,209 |
(C4×D4).14C4 = C42.398D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).14C4 | 128,210 |
(C4×D4).15C4 = D4⋊M4(2) | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).15C4 | 128,218 |
(C4×D4).16C4 = C42.374D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).16C4 | 128,220 |
(C4×D4).17C4 = D4⋊4M4(2) | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).17C4 | 128,221 |
(C4×D4).18C4 = D4⋊5M4(2) | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).18C4 | 128,222 |
(C4×D4).19C4 = C16⋊9D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).19C4 | 128,900 |
(C4×D4).20C4 = C16⋊6D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).20C4 | 128,901 |
(C4×D4).21C4 = D4.5C42 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).21C4 | 128,1607 |
(C4×D4).22C4 = C42.674C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).22C4 | 128,1638 |
(C4×D4).23C4 = C42.260C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).23C4 | 128,1654 |
(C4×D4).24C4 = C42.261C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).24C4 | 128,1655 |
(C4×D4).25C4 = C42.678C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).25C4 | 128,1657 |
(C4×D4).26C4 = C2×C8⋊9D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).26C4 | 128,1659 |
(C4×D4).27C4 = C2×C8⋊6D4 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).27C4 | 128,1660 |
(C4×D4).28C4 = D4×M4(2) | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).28C4 | 128,1666 |
(C4×D4).29C4 = C42.290C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).29C4 | 128,1697 |
(C4×D4).30C4 = D4⋊6M4(2) | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).30C4 | 128,1702 |
(C4×D4).31C4 = Q8⋊6M4(2) | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).31C4 | 128,1703 |
(C4×D4).32C4 = C42.691C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).32C4 | 128,1704 |
(C4×D4).33C4 = C23⋊3M4(2) | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).33C4 | 128,1705 |
(C4×D4).34C4 = D4⋊7M4(2) | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).34C4 | 128,1706 |
(C4×D4).35C4 = C42.693C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 32 | | (C4xD4).35C4 | 128,1707 |
(C4×D4).36C4 = C42.697C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).36C4 | 128,1720 |
(C4×D4).37C4 = C42.698C23 | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).37C4 | 128,1721 |
(C4×D4).38C4 = D4⋊8M4(2) | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).38C4 | 128,1722 |
(C4×D4).39C4 = Q8⋊7M4(2) | φ: C4/C2 → C2 ⊆ Out C4×D4 | 64 | | (C4xD4).39C4 | 128,1723 |
(C4×D4).40C4 = D4×C16 | φ: trivial image | 64 | | (C4xD4).40C4 | 128,899 |
(C4×D4).41C4 = C4×C8○D4 | φ: trivial image | 64 | | (C4xD4).41C4 | 128,1606 |
(C4×D4).42C4 = D4×C2×C8 | φ: trivial image | 64 | | (C4xD4).42C4 | 128,1658 |
(C4×D4).43C4 = C8×C4○D4 | φ: trivial image | 64 | | (C4xD4).43C4 | 128,1696 |