p-group, metabelian, nilpotent (class 2), monomial
Aliases: D4⋊7M4(2), C42.692C23, C4.1682+ 1+4, (C8×D4)⋊45C2, C8⋊6D4⋊39C2, C8⋊9D4⋊40C2, C4⋊C8⋊90C22, (C4×C8)⋊59C22, D4○3(C22⋊C8), (C4×D4).34C4, C24.85(C2×C4), C8⋊C4⋊30C22, C22⋊C8⋊79C22, C42.222(C2×C4), (C2×C8).432C23, (C2×C4).671C24, (C22×C8)⋊55C22, (C22×D4).43C4, C4.35(C2×M4(2)), C24.4C4⋊35C2, C42.6C4⋊51C2, (C4×D4).363C22, C22.16(C8○D4), C42.12C4⋊52C2, C22.7(C2×M4(2)), (C2×M4(2))⋊45C22, C23.229(C22×C4), (C2×C42).781C22, (C23×C4).530C22, (C22×C4).939C23, C22.195(C23×C4), C2.19(C22×M4(2)), C2.45(C22.11C24), (C2×C4×D4).77C2, (C2×C4⋊C4).77C4, C2.27(C2×C8○D4), C4⋊C4.229(C2×C4), (C2×C22⋊C8)⋊46C2, (C2×D4).235(C2×C4), (C2×C22⋊C4).51C4, C22⋊C4.77(C2×C4), (C2×C4).276(C22×C4), (C22×C4).352(C2×C4), SmallGroup(128,1706)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊7M4(2)
G = < a,b,c,d | a4=b2=c8=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, bd=db, dcd=c5 >
Subgroups: 388 in 232 conjugacy classes, 136 normal (36 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C24, C4×C8, C8⋊C4, C22⋊C8, C22⋊C8, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C4×D4, C22×C8, C2×M4(2), C23×C4, C22×D4, C2×C22⋊C8, C24.4C4, C42.12C4, C42.6C4, C8×D4, C8⋊9D4, C8⋊6D4, C2×C4×D4, D4⋊7M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C24, C2×M4(2), C8○D4, C23×C4, 2+ 1+4, C22.11C24, C22×M4(2), C2×C8○D4, D4⋊7M4(2)
(1 19 25 12)(2 20 26 13)(3 21 27 14)(4 22 28 15)(5 23 29 16)(6 24 30 9)(7 17 31 10)(8 18 32 11)
(1 16)(2 24)(3 10)(4 18)(5 12)(6 20)(7 14)(8 22)(9 26)(11 28)(13 30)(15 32)(17 27)(19 29)(21 31)(23 25)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 12)(2 9)(3 14)(4 11)(5 16)(6 13)(7 10)(8 15)(17 31)(18 28)(19 25)(20 30)(21 27)(22 32)(23 29)(24 26)
G:=sub<Sym(32)| (1,19,25,12)(2,20,26,13)(3,21,27,14)(4,22,28,15)(5,23,29,16)(6,24,30,9)(7,17,31,10)(8,18,32,11), (1,16)(2,24)(3,10)(4,18)(5,12)(6,20)(7,14)(8,22)(9,26)(11,28)(13,30)(15,32)(17,27)(19,29)(21,31)(23,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,12)(2,9)(3,14)(4,11)(5,16)(6,13)(7,10)(8,15)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26)>;
G:=Group( (1,19,25,12)(2,20,26,13)(3,21,27,14)(4,22,28,15)(5,23,29,16)(6,24,30,9)(7,17,31,10)(8,18,32,11), (1,16)(2,24)(3,10)(4,18)(5,12)(6,20)(7,14)(8,22)(9,26)(11,28)(13,30)(15,32)(17,27)(19,29)(21,31)(23,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,12)(2,9)(3,14)(4,11)(5,16)(6,13)(7,10)(8,15)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26) );
G=PermutationGroup([[(1,19,25,12),(2,20,26,13),(3,21,27,14),(4,22,28,15),(5,23,29,16),(6,24,30,9),(7,17,31,10),(8,18,32,11)], [(1,16),(2,24),(3,10),(4,18),(5,12),(6,20),(7,14),(8,22),(9,26),(11,28),(13,30),(15,32),(17,27),(19,29),(21,31),(23,25)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,12),(2,9),(3,14),(4,11),(5,16),(6,13),(7,10),(8,15),(17,31),(18,28),(19,25),(20,30),(21,27),(22,32),(23,29),(24,26)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 4R | 8A | ··· | 8H | 8I | ··· | 8T |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | M4(2) | C8○D4 | 2+ 1+4 |
kernel | D4⋊7M4(2) | C2×C22⋊C8 | C24.4C4 | C42.12C4 | C42.6C4 | C8×D4 | C8⋊9D4 | C8⋊6D4 | C2×C4×D4 | C2×C22⋊C4 | C2×C4⋊C4 | C4×D4 | C22×D4 | D4 | C22 | C4 |
# reps | 1 | 2 | 2 | 1 | 1 | 2 | 4 | 2 | 1 | 4 | 2 | 8 | 2 | 8 | 8 | 2 |
Matrix representation of D4⋊7M4(2) ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 1 |
0 | 0 | 15 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 16 |
0 | 0 | 0 | 16 |
0 | 15 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 15 | 2 |
0 | 0 | 13 | 2 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 1 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,16,15,0,0,1,1],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,16,16],[0,2,0,0,15,0,0,0,0,0,15,13,0,0,2,2],[16,0,0,0,0,1,0,0,0,0,16,0,0,0,1,1] >;
D4⋊7M4(2) in GAP, Magma, Sage, TeX
D_4\rtimes_7M_4(2)
% in TeX
G:=Group("D4:7M4(2)");
// GroupNames label
G:=SmallGroup(128,1706);
// by ID
G=gap.SmallGroup(128,1706);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,891,675,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,b*d=d*b,d*c*d=c^5>;
// generators/relations