Copied to
clipboard

G = D4⋊C16order 128 = 27

The semidirect product of D4 and C16 acting via C16/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D4⋊C16, C8.34D8, C8.37SD16, C4.1M5(2), C4⋊C161C2, (C4×C16)⋊1C2, C4⋊C4.4C8, C4.40C4≀C2, C4⋊C8.10C4, C4.1(C2×C16), (C2×D4).4C8, (C8×D4).1C2, C2.2(D4⋊C8), (C4×D4).10C4, (C2×C8).294D4, C2.1(D4.C8), C2.5(C22⋊C16), (C4×C8).354C22, C42.252(C2×C4), (C2×C4).33M4(2), C4.45(D4⋊C4), C22.35(C22⋊C8), (C2×C4).45(C2×C8), (C2×C4).380(C22⋊C4), SmallGroup(128,61)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — D4⋊C16
C1C2C4C2×C4C2×C8C4×C8C8×D4 — D4⋊C16
C1C2C4 — D4⋊C16
C1C2×C8C4×C8 — D4⋊C16
C1C2C2C2C2C2×C4C2×C4C4×C8 — D4⋊C16

Generators and relations for D4⋊C16
 G = < a,b,c | a4=b2=c16=1, bab=cac-1=a-1, cbc-1=ab >

4C2
4C2
2C4
2C22
2C22
4C22
4C22
4C4
2D4
2C8
2C2×C4
2C23
4C2×C4
4C8
4C2×C4
2C16
2C22⋊C4
2C22×C4
2C2×C8
2C16
4C2×C8
4C16
4C2×C8
2C2×C16
2C22⋊C8
2C22×C8
2C2×C16

Smallest permutation representation of D4⋊C16
On 64 points
Generators in S64
(1 24 41 60)(2 61 42 25)(3 26 43 62)(4 63 44 27)(5 28 45 64)(6 49 46 29)(7 30 47 50)(8 51 48 31)(9 32 33 52)(10 53 34 17)(11 18 35 54)(12 55 36 19)(13 20 37 56)(14 57 38 21)(15 22 39 58)(16 59 40 23)
(1 52)(2 34)(3 54)(4 36)(5 56)(6 38)(7 58)(8 40)(9 60)(10 42)(11 62)(12 44)(13 64)(14 46)(15 50)(16 48)(17 25)(18 43)(19 27)(20 45)(21 29)(22 47)(23 31)(24 33)(26 35)(28 37)(30 39)(32 41)(49 57)(51 59)(53 61)(55 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,24,41,60)(2,61,42,25)(3,26,43,62)(4,63,44,27)(5,28,45,64)(6,49,46,29)(7,30,47,50)(8,51,48,31)(9,32,33,52)(10,53,34,17)(11,18,35,54)(12,55,36,19)(13,20,37,56)(14,57,38,21)(15,22,39,58)(16,59,40,23), (1,52)(2,34)(3,54)(4,36)(5,56)(6,38)(7,58)(8,40)(9,60)(10,42)(11,62)(12,44)(13,64)(14,46)(15,50)(16,48)(17,25)(18,43)(19,27)(20,45)(21,29)(22,47)(23,31)(24,33)(26,35)(28,37)(30,39)(32,41)(49,57)(51,59)(53,61)(55,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;

G:=Group( (1,24,41,60)(2,61,42,25)(3,26,43,62)(4,63,44,27)(5,28,45,64)(6,49,46,29)(7,30,47,50)(8,51,48,31)(9,32,33,52)(10,53,34,17)(11,18,35,54)(12,55,36,19)(13,20,37,56)(14,57,38,21)(15,22,39,58)(16,59,40,23), (1,52)(2,34)(3,54)(4,36)(5,56)(6,38)(7,58)(8,40)(9,60)(10,42)(11,62)(12,44)(13,64)(14,46)(15,50)(16,48)(17,25)(18,43)(19,27)(20,45)(21,29)(22,47)(23,31)(24,33)(26,35)(28,37)(30,39)(32,41)(49,57)(51,59)(53,61)(55,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,24,41,60),(2,61,42,25),(3,26,43,62),(4,63,44,27),(5,28,45,64),(6,49,46,29),(7,30,47,50),(8,51,48,31),(9,32,33,52),(10,53,34,17),(11,18,35,54),(12,55,36,19),(13,20,37,56),(14,57,38,21),(15,22,39,58),(16,59,40,23)], [(1,52),(2,34),(3,54),(4,36),(5,56),(6,38),(7,58),(8,40),(9,60),(10,42),(11,62),(12,44),(13,64),(14,46),(15,50),(16,48),(17,25),(18,43),(19,27),(20,45),(21,29),(22,47),(23,31),(24,33),(26,35),(28,37),(30,39),(32,41),(49,57),(51,59),(53,61),(55,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J8A···8H8I8J8K8L8M8N8O8P16A···16P16Q···16X
order12222244444444448···88888888816···1616···16
size11114411112222441···1222244442···24···4

56 irreducible representations

dim1111111112222222
type++++++
imageC1C2C2C2C4C4C8C8C16D4D8SD16M4(2)C4≀C2M5(2)D4.C8
kernelD4⋊C16C4×C16C4⋊C16C8×D4C4⋊C8C4×D4C4⋊C4C2×D4D4C2×C8C8C8C2×C4C4C4C2
# reps11112244162222448

Matrix representation of D4⋊C16 in GL3(𝔽17) generated by

100
001
0160
,
100
0016
0160
,
1400
0152
022
G:=sub<GL(3,GF(17))| [1,0,0,0,0,16,0,1,0],[1,0,0,0,0,16,0,16,0],[14,0,0,0,15,2,0,2,2] >;

D4⋊C16 in GAP, Magma, Sage, TeX

D_4\rtimes C_{16}
% in TeX

G:=Group("D4:C16");
// GroupNames label

G:=SmallGroup(128,61);
// by ID

G=gap.SmallGroup(128,61);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,422,219,100,136,124]);
// Polycyclic

G:=Group<a,b,c|a^4=b^2=c^16=1,b*a*b=c*a*c^-1=a^-1,c*b*c^-1=a*b>;
// generators/relations

Export

Subgroup lattice of D4⋊C16 in TeX

׿
×
𝔽