Extensions 1→N→G→Q→1 with N=C4×Q8 and Q=C4

Direct product G=N×Q with N=C4×Q8 and Q=C4
dρLabelID
Q8×C42128Q8xC4^2128,1004

Semidirect products G=N:Q with N=C4×Q8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×Q8)⋊1C4 = C42.375D4φ: C4/C1C4 ⊆ Out C4×Q832(C4xQ8):1C4128,232
(C4×Q8)⋊2C4 = C42.404D4φ: C4/C1C4 ⊆ Out C4×Q832(C4xQ8):2C4128,235
(C4×Q8)⋊3C4 = C42.56D4φ: C4/C1C4 ⊆ Out C4×Q832(C4xQ8):3C4128,238
(C4×Q8)⋊4C4 = C42.57D4φ: C4/C1C4 ⊆ Out C4×Q832(C4xQ8):4C4128,241
(C4×Q8)⋊5C4 = C42.58D4φ: C4/C1C4 ⊆ Out C4×Q832(C4xQ8):5C4128,244
(C4×Q8)⋊6C4 = C42.60D4φ: C4/C1C4 ⊆ Out C4×Q832(C4xQ8):6C4128,247
(C4×Q8)⋊7C4 = C42.62D4φ: C4/C1C4 ⊆ Out C4×Q832(C4xQ8):7C4128,250
(C4×Q8)⋊8C4 = C42.63D4φ: C4/C1C4 ⊆ Out C4×Q832(C4xQ8):8C4128,253
(C4×Q8)⋊9C4 = C4×C4≀C2φ: C4/C2C2 ⊆ Out C4×Q832(C4xQ8):9C4128,490
(C4×Q8)⋊10C4 = D4.C42φ: C4/C2C2 ⊆ Out C4×Q832(C4xQ8):10C4128,491
(C4×Q8)⋊11C4 = C4×Q8⋊C4φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):11C4128,493
(C4×Q8)⋊12C4 = Q8⋊C42φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):12C4128,495
(C4×Q8)⋊13C4 = C42.99D4φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):13C4128,535
(C4×Q8)⋊14C4 = C42.101D4φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):14C4128,537
(C4×Q8)⋊15C4 = C42.102D4φ: C4/C2C2 ⊆ Out C4×Q832(C4xQ8):15C4128,538
(C4×Q8)⋊16C4 = Q84C42φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):16C4128,1008
(C4×Q8)⋊17C4 = C4214Q8φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):17C4128,1027
(C4×Q8)⋊18C4 = C23.202C24φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):18C4128,1052
(C4×Q8)⋊19C4 = Q8×C4⋊C4φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):19C4128,1082
(C4×Q8)⋊20C4 = C23.233C24φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):20C4128,1083
(C4×Q8)⋊21C4 = C23.237C24φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):21C4128,1087
(C4×Q8)⋊22C4 = C23.238C24φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8):22C4128,1088

Non-split extensions G=N.Q with N=C4×Q8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×Q8).1C4 = C8.17Q16φ: C4/C1C4 ⊆ Out C4×Q8128(C4xQ8).1C4128,70
(C4×Q8).2C4 = C42.66D4φ: C4/C1C4 ⊆ Out C4×Q864(C4xQ8).2C4128,256
(C4×Q8).3C4 = C42.376D4φ: C4/C1C4 ⊆ Out C4×Q864(C4xQ8).3C4128,261
(C4×Q8).4C4 = C42.69D4φ: C4/C1C4 ⊆ Out C4×Q864(C4xQ8).4C4128,264
(C4×Q8).5C4 = C42.72D4φ: C4/C1C4 ⊆ Out C4×Q864(C4xQ8).5C4128,267
(C4×Q8).6C4 = C42.410D4φ: C4/C1C4 ⊆ Out C4×Q864(C4xQ8).6C4128,274
(C4×Q8).7C4 = C42.79D4φ: C4/C1C4 ⊆ Out C4×Q864(C4xQ8).7C4128,282
(C4×Q8).8C4 = C42.418D4φ: C4/C1C4 ⊆ Out C4×Q864(C4xQ8).8C4128,286
(C4×Q8).9C4 = C42.86D4φ: C4/C1C4 ⊆ Out C4×Q864(C4xQ8).9C4128,291
(C4×Q8).10C4 = Q8⋊C16φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8).10C4128,69
(C4×Q8).11C4 = C2×Q8⋊C8φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8).11C4128,207
(C4×Q8).12C4 = C42.455D4φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).12C4128,208
(C4×Q8).13C4 = C42.397D4φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).13C4128,209
(C4×Q8).14C4 = C42.399D4φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).14C4128,211
(C4×Q8).15C4 = Q8⋊M4(2)φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).15C4128,219
(C4×Q8).16C4 = C42.374D4φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).16C4128,220
(C4×Q8).17C4 = D44M4(2)φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).17C4128,221
(C4×Q8).18C4 = Q85M4(2)φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).18C4128,223
(C4×Q8).19C4 = C164Q8φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8).19C4128,915
(C4×Q8).20C4 = D4.5C42φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).20C4128,1607
(C4×Q8).21C4 = C42.674C23φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).21C4128,1638
(C4×Q8).22C4 = C42.260C23φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).22C4128,1654
(C4×Q8).23C4 = C42.261C23φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).23C4128,1655
(C4×Q8).24C4 = C42.678C23φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).24C4128,1657
(C4×Q8).25C4 = C2×C84Q8φ: C4/C2C2 ⊆ Out C4×Q8128(C4xQ8).25C4128,1691
(C4×Q8).26C4 = Q8×M4(2)φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).26C4128,1695
(C4×Q8).27C4 = C42.290C23φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).27C4128,1697
(C4×Q8).28C4 = D46M4(2)φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).28C4128,1702
(C4×Q8).29C4 = Q86M4(2)φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).29C4128,1703
(C4×Q8).30C4 = C42.695C23φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).30C4128,1714
(C4×Q8).31C4 = C42.302C23φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).31C4128,1715
(C4×Q8).32C4 = Q8.4M4(2)φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).32C4128,1716
(C4×Q8).33C4 = C42.697C23φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).33C4128,1720
(C4×Q8).34C4 = C42.698C23φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).34C4128,1721
(C4×Q8).35C4 = D48M4(2)φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).35C4128,1722
(C4×Q8).36C4 = Q87M4(2)φ: C4/C2C2 ⊆ Out C4×Q864(C4xQ8).36C4128,1723
(C4×Q8).37C4 = Q8×C16φ: trivial image128(C4xQ8).37C4128,914
(C4×Q8).38C4 = C4×C8○D4φ: trivial image64(C4xQ8).38C4128,1606
(C4×Q8).39C4 = Q8×C2×C8φ: trivial image128(C4xQ8).39C4128,1690
(C4×Q8).40C4 = C8×C4○D4φ: trivial image64(C4xQ8).40C4128,1696

׿
×
𝔽