Extensions 1→N→G→Q→1 with N=M5(2)⋊C2 and Q=C2

Direct product G=N×Q with N=M5(2)⋊C2 and Q=C2
dρLabelID
C2×M5(2)⋊C232C2xM5(2):C2128,878

Semidirect products G=N:Q with N=M5(2)⋊C2 and Q=C2
extensionφ:Q→Out NdρLabelID
M5(2)⋊C21C2 = Q16.10D4φ: C2/C1C2 ⊆ Out M5(2)⋊C2324+M5(2):C2:1C2128,924
M5(2)⋊C22C2 = D8.3D4φ: C2/C1C2 ⊆ Out M5(2)⋊C2324M5(2):C2:2C2128,926
M5(2)⋊C23C2 = C8.3D8φ: C2/C1C2 ⊆ Out M5(2)⋊C2324M5(2):C2:3C2128,944
M5(2)⋊C24C2 = D83D4φ: C2/C1C2 ⊆ Out M5(2)⋊C2164+M5(2):C2:4C2128,945
M5(2)⋊C25C2 = M5(2).C22φ: C2/C1C2 ⊆ Out M5(2)⋊C2168+M5(2):C2:5C2128,970
M5(2)⋊C26C2 = D16⋊C4φ: C2/C1C2 ⊆ Out M5(2)⋊C2168+M5(2):C2:6C2128,913
M5(2)⋊C27C2 = D4.3D8φ: C2/C1C2 ⊆ Out M5(2)⋊C2324+M5(2):C2:7C2128,953
M5(2)⋊C28C2 = D4.5D8φ: C2/C1C2 ⊆ Out M5(2)⋊C2324M5(2):C2:8C2128,955
M5(2)⋊C29C2 = C23.21SD16φ: trivial image324M5(2):C2:9C2128,880


׿
×
𝔽