p-group, metabelian, nilpotent (class 4), monomial
Aliases: C8.3D8, D8.6D4, Q16.6D4, C42.142D4, M5(2).3C22, C8○D8⋊3C2, C4.67(C2×D8), C8.76(C2×D4), C8.C8⋊1C2, C8.1(C4○D4), Q32⋊C2⋊4C2, (C2×C8).130D4, M5(2)⋊C2⋊3C2, C8.17D4⋊3C2, C16⋊C22.2C2, C8.12D4⋊12C2, C4.55(C4⋊D4), C2.24(C4⋊D8), (C2×C8).235C23, (C4×C8).162C22, C4○D8.18C22, (C2×D8).47C22, (C2×Q16).46C22, C22.24(C8⋊C22), C8.C4.18C22, (C2×C4).280(C2×D4), SmallGroup(128,944)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.3D8
G = < a,b,c | a8=c2=1, b8=a4, bab-1=a-1, cac=a3, cbc=a4b7 >
Subgroups: 204 in 77 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C16, C42, C22⋊C4, C2×C8, C2×C8, M4(2), D8, D8, SD16, Q16, Q16, C2×D4, C2×Q8, C4○D4, C4×C8, C4≀C2, C8.C4, M5(2), D16, SD32, Q32, C4.4D4, C8○D4, C2×D8, C2×SD16, C2×Q16, C4○D8, M5(2)⋊C2, C8.17D4, C8.C8, C8○D8, C8.12D4, C16⋊C22, Q32⋊C2, C8.3D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C8⋊C22, C4⋊D8, C8.3D8
Character table of C8.3D8
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 2 | 8 | 16 | 2 | 2 | 4 | 4 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | 4 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | -2√2 | 2√-2 | -2√-2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 2√2 | -2√-2 | 2√-2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | -2√2 | -2√-2 | 2√-2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 2√2 | 2√-2 | -2√-2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 29 13 25 9 21 5 17)(2 18 6 22 10 26 14 30)(3 31 15 27 11 23 7 19)(4 20 8 24 12 28 16 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 21)(18 20)(22 32)(23 31)(24 30)(25 29)(26 28)
G:=sub<Sym(32)| (1,29,13,25,9,21,5,17)(2,18,6,22,10,26,14,30)(3,31,15,27,11,23,7,19)(4,20,8,24,12,28,16,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,21)(18,20)(22,32)(23,31)(24,30)(25,29)(26,28)>;
G:=Group( (1,29,13,25,9,21,5,17)(2,18,6,22,10,26,14,30)(3,31,15,27,11,23,7,19)(4,20,8,24,12,28,16,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,21)(18,20)(22,32)(23,31)(24,30)(25,29)(26,28) );
G=PermutationGroup([[(1,29,13,25,9,21,5,17),(2,18,6,22,10,26,14,30),(3,31,15,27,11,23,7,19),(4,20,8,24,12,28,16,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,21),(18,20),(22,32),(23,31),(24,30),(25,29),(26,28)]])
Matrix representation of C8.3D8 ►in GL4(𝔽17) generated by
10 | 7 | 0 | 0 |
5 | 0 | 0 | 0 |
0 | 0 | 7 | 10 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 6 |
0 | 0 | 3 | 0 |
1 | 0 | 0 | 0 |
1 | 16 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 0 | 6 |
0 | 0 | 3 | 0 |
G:=sub<GL(4,GF(17))| [10,5,0,0,7,0,0,0,0,0,7,12,0,0,10,0],[0,0,1,1,0,0,0,16,0,3,0,0,6,0,0,0],[1,1,0,0,0,16,0,0,0,0,0,3,0,0,6,0] >;
C8.3D8 in GAP, Magma, Sage, TeX
C_8._3D_8
% in TeX
G:=Group("C8.3D8");
// GroupNames label
G:=SmallGroup(128,944);
// by ID
G=gap.SmallGroup(128,944);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,64,422,2019,248,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c|a^8=c^2=1,b^8=a^4,b*a*b^-1=a^-1,c*a*c=a^3,c*b*c=a^4*b^7>;
// generators/relations
Export