p-group, metabelian, nilpotent (class 4), monomial
Aliases: D8⋊3D4, C8.4D8, Q16⋊3D4, C42.143D4, M5(2).4C22, C8○D8⋊4C2, C4.68(C2×D8), C8.77(C2×D4), C8.C8⋊2C2, C8⋊4D4⋊15C2, C16⋊C22⋊4C2, C8.2(C4○D4), (C2×C8).131D4, M5(2)⋊C2⋊4C2, C2.25(C4⋊D8), C4.56(C4⋊D4), (C2×C8).236C23, (C4×C8).163C22, C4○D8.19C22, (C2×D8).48C22, C22.25(C8⋊C22), C8.C4.19C22, (C2×C4).281(C2×D4), SmallGroup(128,945)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D8⋊3D4
G = < a,b,c,d | a8=b2=c4=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, dbd=a-1b, dcd=c-1 >
Subgroups: 268 in 85 conjugacy classes, 30 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C16, C42, C2×C8, C2×C8, M4(2), D8, D8, SD16, Q16, C2×D4, C4○D4, C4×C8, C4≀C2, C8.C4, M5(2), D16, SD32, C4⋊1D4, C8○D4, C2×D8, C2×D8, C4○D8, M5(2)⋊C2, C8.C8, C8○D8, C8⋊4D4, C16⋊C22, D8⋊3D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C8⋊C22, C4⋊D8, D8⋊3D4
Character table of D8⋊3D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 2 | 8 | 16 | 16 | 2 | 2 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 2 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 2 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | 4 | 0 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -2√2 | 2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 2√2 | -2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 12)(2 11)(3 10)(4 9)(5 16)(6 15)(7 14)(8 13)
(1 7 5 3)(2 8 6 4)(9 13)(10 14)(11 15)(12 16)
(1 3)(4 8)(5 7)(9 14)(10 13)(11 12)(15 16)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13), (1,7,5,3)(2,8,6,4)(9,13)(10,14)(11,15)(12,16), (1,3)(4,8)(5,7)(9,14)(10,13)(11,12)(15,16)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13), (1,7,5,3)(2,8,6,4)(9,13)(10,14)(11,15)(12,16), (1,3)(4,8)(5,7)(9,14)(10,13)(11,12)(15,16) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,12),(2,11),(3,10),(4,9),(5,16),(6,15),(7,14),(8,13)], [(1,7,5,3),(2,8,6,4),(9,13),(10,14),(11,15),(12,16)], [(1,3),(4,8),(5,7),(9,14),(10,13),(11,12),(15,16)]])
G:=TransitiveGroup(16,379);
Matrix representation of D8⋊3D4 ►in GL4(𝔽7) generated by
5 | 0 | 5 | 1 |
1 | 5 | 2 | 1 |
1 | 6 | 2 | 5 |
5 | 5 | 1 | 1 |
3 | 2 | 1 | 1 |
3 | 4 | 5 | 5 |
5 | 6 | 6 | 0 |
2 | 1 | 2 | 1 |
6 | 3 | 6 | 1 |
0 | 2 | 5 | 4 |
0 | 5 | 6 | 6 |
0 | 2 | 3 | 5 |
1 | 1 | 0 | 4 |
0 | 3 | 4 | 4 |
0 | 6 | 5 | 6 |
0 | 6 | 6 | 5 |
G:=sub<GL(4,GF(7))| [5,1,1,5,0,5,6,5,5,2,2,1,1,1,5,1],[3,3,5,2,2,4,6,1,1,5,6,2,1,5,0,1],[6,0,0,0,3,2,5,2,6,5,6,3,1,4,6,5],[1,0,0,0,1,3,6,6,0,4,5,6,4,4,6,5] >;
D8⋊3D4 in GAP, Magma, Sage, TeX
D_8\rtimes_3D_4
% in TeX
G:=Group("D8:3D4");
// GroupNames label
G:=SmallGroup(128,945);
// by ID
G=gap.SmallGroup(128,945);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,512,422,2019,248,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations
Export