Extensions 1→N→G→Q→1 with N=C2xC8oD4 and Q=C2

Direct product G=NxQ with N=C2xC8oD4 and Q=C2
dρLabelID
C22xC8oD464C2^2xC8oD4128,2303

Semidirect products G=N:Q with N=C2xC8oD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC8oD4):1C2 = (C2xC8):11D4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):1C2128,1789
(C2xC8oD4):2C2 = (C2xC8):12D4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):2C2128,1790
(C2xC8oD4):3C2 = (C2xC8):13D4φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4):3C2128,1792
(C2xC8oD4):4C2 = (C2xC8):14D4φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4):4C2128,1793
(C2xC8oD4):5C2 = M4(2):16D4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):5C2128,1794
(C2xC8oD4):6C2 = M4(2):17D4φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4):6C2128,1795
(C2xC8oD4):7C2 = C2xD4.3D4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):7C2128,1796
(C2xC8oD4):8C2 = C2xD4.4D4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):8C2128,1797
(C2xC8oD4):9C2 = M4(2).10C23φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4):9C2128,1799
(C2xC8oD4):10C2 = C2xD4oD8φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):10C2128,2313
(C2xC8oD4):11C2 = C2xD4oSD16φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):11C2128,2314
(C2xC8oD4):12C2 = C2xQ8oD8φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4):12C2128,2315
(C2xC8oD4):13C2 = C8.C24φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4):13C2128,2316
(C2xC8oD4):14C2 = M4(2).43D4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):14C2128,608
(C2xC8oD4):15C2 = M4(2).48D4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):15C2128,639
(C2xC8oD4):16C2 = D4o(C22:C8)φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):16C2128,1612
(C2xC8oD4):17C2 = 2+ 1+4:5C4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):17C2128,1629
(C2xC8oD4):18C2 = 2- 1+4:4C4φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4):18C2128,1630
(C2xC8oD4):19C2 = C42.264C23φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):19C2128,1661
(C2xC8oD4):20C2 = C42.265C23φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):20C2128,1662
(C2xC8oD4):21C2 = C42.681C23φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4):21C2128,1663
(C2xC8oD4):22C2 = C42.266C23φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4):22C2128,1664
(C2xC8oD4):23C2 = M4(2):22D4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):23C2128,1665
(C2xC8oD4):24C2 = M4(2):23D4φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4):24C2128,1667
(C2xC8oD4):25C2 = C2xC8oD8φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):25C2128,1685
(C2xC8oD4):26C2 = C2xC8.26D4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):26C2128,1686
(C2xC8oD4):27C2 = C42.283C23φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4):27C2128,1687
(C2xC8oD4):28C2 = C2xQ8oM4(2)φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4):28C2128,2304
(C2xC8oD4):29C2 = C4.22C25φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4):29C2128,2305

Non-split extensions G=N.Q with N=C2xC8oD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC8oD4).1C2 = (C2xD4).24Q8φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4).1C2128,544
(C2xC8oD4).2C2 = (C2xC8).103D4φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4).2C2128,545
(C2xC8oD4).3C2 = C8oD4:C4φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4).3C2128,546
(C2xC8oD4).4C2 = C4oD4.4Q8φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).4C2128,547
(C2xC8oD4).5C2 = C4oD4.5Q8φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).5C2128,548
(C2xC8oD4).6C2 = C4oD4.7Q8φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).6C2128,1644
(C2xC8oD4).7C2 = C4oD4.8Q8φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).7C2128,1645
(C2xC8oD4).8C2 = M4(2).29C23φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4).8C2128,1648
(C2xC8oD4).9C2 = C8.D4:C2φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).9C2128,1791
(C2xC8oD4).10C2 = C2xD4.5D4φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).10C2128,1798
(C2xC8oD4).11C2 = C23.5C42φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4).11C2128,489
(C2xC8oD4).12C2 = Q8.C42φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4).12C2128,496
(C2xC8oD4).13C2 = D4.3C42φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4).13C2128,497
(C2xC8oD4).14C2 = M4(2).42D4φ: C2/C1C2 ⊆ Out C2xC8oD432(C2xC8oD4).14C2128,598
(C2xC8oD4).15C2 = M4(2).49D4φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).15C2128,640
(C2xC8oD4).16C2 = (C2xD4).5C8φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).16C2128,845
(C2xC8oD4).17C2 = M5(2).19C22φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4).17C2128,847
(C2xC8oD4).18C2 = C2xD4.C8φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).18C2128,848
(C2xC8oD4).19C2 = M5(2):12C22φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4).19C2128,849
(C2xC8oD4).20C2 = D4.5C42φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).20C2128,1607
(C2xC8oD4).21C2 = C42.674C23φ: C2/C1C2 ⊆ Out C2xC8oD464(C2xC8oD4).21C2128,1638
(C2xC8oD4).22C2 = Q8oM5(2)φ: C2/C1C2 ⊆ Out C2xC8oD4324(C2xC8oD4).22C2128,2139
(C2xC8oD4).23C2 = C4xC8oD4φ: trivial image64(C2xC8oD4).23C2128,1606
(C2xC8oD4).24C2 = C2xD4oC16φ: trivial image64(C2xC8oD4).24C2128,2138

׿
x
:
Z
F
o
wr
Q
<