extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C8○D4)⋊1C2 = (C2×C8)⋊11D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):1C2 | 128,1789 |
(C2×C8○D4)⋊2C2 = (C2×C8)⋊12D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):2C2 | 128,1790 |
(C2×C8○D4)⋊3C2 = (C2×C8)⋊13D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4):3C2 | 128,1792 |
(C2×C8○D4)⋊4C2 = (C2×C8)⋊14D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4):4C2 | 128,1793 |
(C2×C8○D4)⋊5C2 = M4(2)⋊16D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):5C2 | 128,1794 |
(C2×C8○D4)⋊6C2 = M4(2)⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4):6C2 | 128,1795 |
(C2×C8○D4)⋊7C2 = C2×D4.3D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):7C2 | 128,1796 |
(C2×C8○D4)⋊8C2 = C2×D4.4D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):8C2 | 128,1797 |
(C2×C8○D4)⋊9C2 = M4(2).10C23 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4):9C2 | 128,1799 |
(C2×C8○D4)⋊10C2 = C2×D4○D8 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):10C2 | 128,2313 |
(C2×C8○D4)⋊11C2 = C2×D4○SD16 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):11C2 | 128,2314 |
(C2×C8○D4)⋊12C2 = C2×Q8○D8 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4):12C2 | 128,2315 |
(C2×C8○D4)⋊13C2 = C8.C24 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4):13C2 | 128,2316 |
(C2×C8○D4)⋊14C2 = M4(2).43D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):14C2 | 128,608 |
(C2×C8○D4)⋊15C2 = M4(2).48D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):15C2 | 128,639 |
(C2×C8○D4)⋊16C2 = D4○(C22⋊C8) | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):16C2 | 128,1612 |
(C2×C8○D4)⋊17C2 = 2+ 1+4⋊5C4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):17C2 | 128,1629 |
(C2×C8○D4)⋊18C2 = 2- 1+4⋊4C4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4):18C2 | 128,1630 |
(C2×C8○D4)⋊19C2 = C42.264C23 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):19C2 | 128,1661 |
(C2×C8○D4)⋊20C2 = C42.265C23 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):20C2 | 128,1662 |
(C2×C8○D4)⋊21C2 = C42.681C23 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4):21C2 | 128,1663 |
(C2×C8○D4)⋊22C2 = C42.266C23 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4):22C2 | 128,1664 |
(C2×C8○D4)⋊23C2 = M4(2)⋊22D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):23C2 | 128,1665 |
(C2×C8○D4)⋊24C2 = M4(2)⋊23D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4):24C2 | 128,1667 |
(C2×C8○D4)⋊25C2 = C2×C8○D8 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):25C2 | 128,1685 |
(C2×C8○D4)⋊26C2 = C2×C8.26D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):26C2 | 128,1686 |
(C2×C8○D4)⋊27C2 = C42.283C23 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4):27C2 | 128,1687 |
(C2×C8○D4)⋊28C2 = C2×Q8○M4(2) | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4):28C2 | 128,2304 |
(C2×C8○D4)⋊29C2 = C4.22C25 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4):29C2 | 128,2305 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C8○D4).1C2 = (C2×D4).24Q8 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4).1C2 | 128,544 |
(C2×C8○D4).2C2 = (C2×C8).103D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4).2C2 | 128,545 |
(C2×C8○D4).3C2 = C8○D4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4).3C2 | 128,546 |
(C2×C8○D4).4C2 = C4○D4.4Q8 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).4C2 | 128,547 |
(C2×C8○D4).5C2 = C4○D4.5Q8 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).5C2 | 128,548 |
(C2×C8○D4).6C2 = C4○D4.7Q8 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).6C2 | 128,1644 |
(C2×C8○D4).7C2 = C4○D4.8Q8 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).7C2 | 128,1645 |
(C2×C8○D4).8C2 = M4(2).29C23 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4).8C2 | 128,1648 |
(C2×C8○D4).9C2 = C8.D4⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).9C2 | 128,1791 |
(C2×C8○D4).10C2 = C2×D4.5D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).10C2 | 128,1798 |
(C2×C8○D4).11C2 = C23.5C42 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4).11C2 | 128,489 |
(C2×C8○D4).12C2 = Q8.C42 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4).12C2 | 128,496 |
(C2×C8○D4).13C2 = D4.3C42 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4).13C2 | 128,497 |
(C2×C8○D4).14C2 = M4(2).42D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | | (C2xC8oD4).14C2 | 128,598 |
(C2×C8○D4).15C2 = M4(2).49D4 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).15C2 | 128,640 |
(C2×C8○D4).16C2 = (C2×D4).5C8 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).16C2 | 128,845 |
(C2×C8○D4).17C2 = M5(2).19C22 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4).17C2 | 128,847 |
(C2×C8○D4).18C2 = C2×D4.C8 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).18C2 | 128,848 |
(C2×C8○D4).19C2 = M5(2)⋊12C22 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4).19C2 | 128,849 |
(C2×C8○D4).20C2 = D4.5C42 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).20C2 | 128,1607 |
(C2×C8○D4).21C2 = C42.674C23 | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 64 | | (C2xC8oD4).21C2 | 128,1638 |
(C2×C8○D4).22C2 = Q8○M5(2) | φ: C2/C1 → C2 ⊆ Out C2×C8○D4 | 32 | 4 | (C2xC8oD4).22C2 | 128,2139 |
(C2×C8○D4).23C2 = C4×C8○D4 | φ: trivial image | 64 | | (C2xC8oD4).23C2 | 128,1606 |
(C2×C8○D4).24C2 = C2×D4○C16 | φ: trivial image | 64 | | (C2xC8oD4).24C2 | 128,2138 |