Extensions 1→N→G→Q→1 with N=C2×C8○D4 and Q=C2

Direct product G=N×Q with N=C2×C8○D4 and Q=C2
dρLabelID
C22×C8○D464C2^2xC8oD4128,2303

Semidirect products G=N:Q with N=C2×C8○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C8○D4)⋊1C2 = (C2×C8)⋊11D4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):1C2128,1789
(C2×C8○D4)⋊2C2 = (C2×C8)⋊12D4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):2C2128,1790
(C2×C8○D4)⋊3C2 = (C2×C8)⋊13D4φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4):3C2128,1792
(C2×C8○D4)⋊4C2 = (C2×C8)⋊14D4φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4):4C2128,1793
(C2×C8○D4)⋊5C2 = M4(2)⋊16D4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):5C2128,1794
(C2×C8○D4)⋊6C2 = M4(2)⋊17D4φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4):6C2128,1795
(C2×C8○D4)⋊7C2 = C2×D4.3D4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):7C2128,1796
(C2×C8○D4)⋊8C2 = C2×D4.4D4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):8C2128,1797
(C2×C8○D4)⋊9C2 = M4(2).10C23φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4):9C2128,1799
(C2×C8○D4)⋊10C2 = C2×D4○D8φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):10C2128,2313
(C2×C8○D4)⋊11C2 = C2×D4○SD16φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):11C2128,2314
(C2×C8○D4)⋊12C2 = C2×Q8○D8φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4):12C2128,2315
(C2×C8○D4)⋊13C2 = C8.C24φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4):13C2128,2316
(C2×C8○D4)⋊14C2 = M4(2).43D4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):14C2128,608
(C2×C8○D4)⋊15C2 = M4(2).48D4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):15C2128,639
(C2×C8○D4)⋊16C2 = D4○(C22⋊C8)φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):16C2128,1612
(C2×C8○D4)⋊17C2 = 2+ 1+45C4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):17C2128,1629
(C2×C8○D4)⋊18C2 = 2- 1+44C4φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4):18C2128,1630
(C2×C8○D4)⋊19C2 = C42.264C23φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):19C2128,1661
(C2×C8○D4)⋊20C2 = C42.265C23φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):20C2128,1662
(C2×C8○D4)⋊21C2 = C42.681C23φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4):21C2128,1663
(C2×C8○D4)⋊22C2 = C42.266C23φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4):22C2128,1664
(C2×C8○D4)⋊23C2 = M4(2)⋊22D4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):23C2128,1665
(C2×C8○D4)⋊24C2 = M4(2)⋊23D4φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4):24C2128,1667
(C2×C8○D4)⋊25C2 = C2×C8○D8φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):25C2128,1685
(C2×C8○D4)⋊26C2 = C2×C8.26D4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):26C2128,1686
(C2×C8○D4)⋊27C2 = C42.283C23φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4):27C2128,1687
(C2×C8○D4)⋊28C2 = C2×Q8○M4(2)φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4):28C2128,2304
(C2×C8○D4)⋊29C2 = C4.22C25φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4):29C2128,2305

Non-split extensions G=N.Q with N=C2×C8○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C8○D4).1C2 = (C2×D4).24Q8φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4).1C2128,544
(C2×C8○D4).2C2 = (C2×C8).103D4φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4).2C2128,545
(C2×C8○D4).3C2 = C8○D4⋊C4φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4).3C2128,546
(C2×C8○D4).4C2 = C4○D4.4Q8φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).4C2128,547
(C2×C8○D4).5C2 = C4○D4.5Q8φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).5C2128,548
(C2×C8○D4).6C2 = C4○D4.7Q8φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).6C2128,1644
(C2×C8○D4).7C2 = C4○D4.8Q8φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).7C2128,1645
(C2×C8○D4).8C2 = M4(2).29C23φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4).8C2128,1648
(C2×C8○D4).9C2 = C8.D4⋊C2φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).9C2128,1791
(C2×C8○D4).10C2 = C2×D4.5D4φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).10C2128,1798
(C2×C8○D4).11C2 = C23.5C42φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4).11C2128,489
(C2×C8○D4).12C2 = Q8.C42φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4).12C2128,496
(C2×C8○D4).13C2 = D4.3C42φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4).13C2128,497
(C2×C8○D4).14C2 = M4(2).42D4φ: C2/C1C2 ⊆ Out C2×C8○D432(C2xC8oD4).14C2128,598
(C2×C8○D4).15C2 = M4(2).49D4φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).15C2128,640
(C2×C8○D4).16C2 = (C2×D4).5C8φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).16C2128,845
(C2×C8○D4).17C2 = M5(2).19C22φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4).17C2128,847
(C2×C8○D4).18C2 = C2×D4.C8φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).18C2128,848
(C2×C8○D4).19C2 = M5(2)⋊12C22φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4).19C2128,849
(C2×C8○D4).20C2 = D4.5C42φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).20C2128,1607
(C2×C8○D4).21C2 = C42.674C23φ: C2/C1C2 ⊆ Out C2×C8○D464(C2xC8oD4).21C2128,1638
(C2×C8○D4).22C2 = Q8○M5(2)φ: C2/C1C2 ⊆ Out C2×C8○D4324(C2xC8oD4).22C2128,2139
(C2×C8○D4).23C2 = C4×C8○D4φ: trivial image64(C2xC8oD4).23C2128,1606
(C2×C8○D4).24C2 = C2×D4○C16φ: trivial image64(C2xC8oD4).24C2128,2138

׿
×
𝔽