Copied to
clipboard

G = M4(2):22D4order 128 = 27

1st semidirect product of M4(2) and D4 acting through Inn(M4(2))

p-group, metabelian, nilpotent (class 2), monomial

Aliases: M4(2):22D4, C42.267C23, (C8xD4):38C2, C8.86(C2xD4), C4.76(C4xD4), C8:9D4:32C2, C8:6D4:33C2, C4:C8:88C22, (C4xC8):57C22, C22wrC2.4C4, C4:D4.19C4, C22:2(C8oD4), C24.81(C2xC4), C22.15(C4xD4), C8:C4:60C22, C22:Q8.18C4, C22:C8:77C22, (C2xC8).405C23, (C2xC4).652C24, (C22xC8):52C22, (C4xD4).55C22, M4(2)o(C22:C8), C4.198(C22xD4), C8o2M4(2):32C2, C23.36(C22xC4), C22.D4.4C4, C2.16(Q8oM4(2)), (C22xM4(2)):26C2, (C2xM4(2)):78C22, (C22xC4).919C23, (C23xC4).527C22, C22.179(C23xC4), C22.19C24.11C2, C42.6C22:31C2, C42:C2.294C22, C2.50(C2xC4xD4), (C2xC8oD4):23C2, C2.18(C2xC8oD4), C4:C4.116(C2xC4), (C2xC22:C8):44C2, C4.303(C2xC4oD4), C22:C8o(C2xM4(2)), (C2xD4).173(C2xC4), (C2xC4).1084(C2xD4), C22:C4.36(C2xC4), (C2xC4).67(C22xC4), (C2xQ8).156(C2xC4), (C22xC8):C2:30C2, (C2xC4).830(C4oD4), (C22xC4).342(C2xC4), (C2xC4oD4).287C22, SmallGroup(128,1665)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — M4(2):22D4
C1C2C4C2xC4C22xC4C2xM4(2)C22xM4(2) — M4(2):22D4
C1C22 — M4(2):22D4
C1C2xC4 — M4(2):22D4
C1C2C2C2xC4 — M4(2):22D4

Generators and relations for M4(2):22D4
 G = < a,b,c,d | a8=b2=c4=d2=1, bab=cac-1=dad=a5, cbc-1=dbd=a4b, dcd=c-1 >

Subgroups: 380 in 251 conjugacy classes, 142 normal (52 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C23, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, C4xC8, C8:C4, C22:C8, C22:C8, C4:C8, C42:C2, C4xD4, C22wrC2, C4:D4, C22:Q8, C22.D4, C22xC8, C22xC8, C2xM4(2), C2xM4(2), C2xM4(2), C8oD4, C23xC4, C2xC4oD4, C8o2M4(2), C2xC22:C8, (C22xC8):C2, C42.6C22, C8xD4, C8:9D4, C8:6D4, C22.19C24, C22xM4(2), C2xC8oD4, M4(2):22D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, C24, C4xD4, C8oD4, C23xC4, C22xD4, C2xC4oD4, C2xC4xD4, C2xC8oD4, Q8oM4(2), M4(2):22D4

Smallest permutation representation of M4(2):22D4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 17)(2 22)(3 19)(4 24)(5 21)(6 18)(7 23)(8 20)(9 29)(10 26)(11 31)(12 28)(13 25)(14 30)(15 27)(16 32)
(1 11 17 27)(2 16 18 32)(3 13 19 29)(4 10 20 26)(5 15 21 31)(6 12 22 28)(7 9 23 25)(8 14 24 30)
(1 27)(2 32)(3 29)(4 26)(5 31)(6 28)(7 25)(8 30)(9 23)(10 20)(11 17)(12 22)(13 19)(14 24)(15 21)(16 18)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17)(2,22)(3,19)(4,24)(5,21)(6,18)(7,23)(8,20)(9,29)(10,26)(11,31)(12,28)(13,25)(14,30)(15,27)(16,32), (1,11,17,27)(2,16,18,32)(3,13,19,29)(4,10,20,26)(5,15,21,31)(6,12,22,28)(7,9,23,25)(8,14,24,30), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,23)(10,20)(11,17)(12,22)(13,19)(14,24)(15,21)(16,18)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17)(2,22)(3,19)(4,24)(5,21)(6,18)(7,23)(8,20)(9,29)(10,26)(11,31)(12,28)(13,25)(14,30)(15,27)(16,32), (1,11,17,27)(2,16,18,32)(3,13,19,29)(4,10,20,26)(5,15,21,31)(6,12,22,28)(7,9,23,25)(8,14,24,30), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,23)(10,20)(11,17)(12,22)(13,19)(14,24)(15,21)(16,18) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,17),(2,22),(3,19),(4,24),(5,21),(6,18),(7,23),(8,20),(9,29),(10,26),(11,31),(12,28),(13,25),(14,30),(15,27),(16,32)], [(1,11,17,27),(2,16,18,32),(3,13,19,29),(4,10,20,26),(5,15,21,31),(6,12,22,28),(7,9,23,25),(8,14,24,30)], [(1,27),(2,32),(3,29),(4,26),(5,31),(6,28),(7,25),(8,30),(9,23),(10,20),(11,17),(12,22),(13,19),(14,24),(15,21),(16,18)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F4G4H4I···4O8A···8P8Q···8X
order12222222222444444444···48···88···8
size11112222444111122224···42···24···4

50 irreducible representations

dim1111111111111112224
type++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C4C4C4C4D4C4oD4C8oD4Q8oM4(2)
kernelM4(2):22D4C8o2M4(2)C2xC22:C8(C22xC8):C2C42.6C22C8xD4C8:9D4C8:6D4C22.19C24C22xM4(2)C2xC8oD4C22wrC2C4:D4C22:Q8C22.D4M4(2)C2xC4C22C2
# reps1111124211144444482

Matrix representation of M4(2):22D4 in GL4(F17) generated by

0100
4000
0010
0001
,
1000
01600
00160
00016
,
0200
9000
001515
00112
,
0200
9000
001515
00102
G:=sub<GL(4,GF(17))| [0,4,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[0,9,0,0,2,0,0,0,0,0,15,11,0,0,15,2],[0,9,0,0,2,0,0,0,0,0,15,10,0,0,15,2] >;

M4(2):22D4 in GAP, Magma, Sage, TeX

M_4(2)\rtimes_{22}D_4
% in TeX

G:=Group("M4(2):22D4");
// GroupNames label

G:=SmallGroup(128,1665);
// by ID

G=gap.SmallGroup(128,1665);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,184,521,124]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^5,c*b*c^-1=d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<