Copied to
clipboard

G = 2+ 1+4:5C4order 128 = 27

4th semidirect product of 2+ 1+4 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: 2+ 1+4:5C4, D4o(D4:C4), Q8o(Q8:C4), C4oD4.50D4, C2.1(D4oD8), C4.8(C23xC4), (C2xD4).343D4, (C2xQ8).262D4, C4:C4.344C23, (C2xC4).178C24, (C2xC8).468C23, (C22xC8):49C22, C2.1(D4oSD16), D4.20(C22xC4), C23.431(C2xD4), C4.143(C22xD4), Q8.20(C22xC4), D4:C4:86C22, D4.19(C22:C4), C42:C2:4C22, Q8:C4:89C22, (C2xD4).362C23, Q8.19(C22:C4), (C2xQ8).335C23, C23.37D4:31C2, C23.36D4:36C2, C23.24D4:35C2, (C2xM4(2)):71C22, (C22xC4).902C23, C22.128(C22xD4), (C2x2+ 1+4).6C2, C23.33C23:2C2, (C22xD4).320C22, C4oD4:1(C2xC4), (C2xC8oD4):17C2, (C2xD4):24(C2xC4), (C2xC4:C4):43C22, (C2xQ8)o(Q8:C4), (C2xC4).446(C2xD4), C4.33(C2xC22:C4), (C2xD4:C4):50C2, (C2xC4).62(C22xC4), C22.6(C2xC22:C4), (C2xC4oD4).84C22, C2.40(C22xC22:C4), SmallGroup(128,1629)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — 2+ 1+4:5C4
C1C2C22C2xC4C22xC4C2xC4oD4C2x2+ 1+4 — 2+ 1+4:5C4
C1C2C4 — 2+ 1+4:5C4
C1C22C2xC4oD4 — 2+ 1+4:5C4
C1C2C2C2xC4 — 2+ 1+4:5C4

Generators and relations for 2+ 1+4:5C4
 G = < a,b,c,d,e | a4=b2=d2=e4=1, c2=a2, bab=eae-1=a-1, ac=ca, ad=da, bc=cb, bd=db, be=eb, dcd=ece-1=a2c, ede-1=cd >

Subgroups: 764 in 389 conjugacy classes, 172 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C22:C4, C4:C4, C4:C4, C4:C4, C2xC8, C2xC8, C2xC8, M4(2), C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C24, D4:C4, Q8:C4, Q8:C4, C2xC4:C4, C42:C2, C4xD4, C4xQ8, C22xC8, C2xM4(2), C8oD4, C22xD4, C22xD4, C2xC4oD4, C2xC4oD4, C2xC4oD4, 2+ 1+4, 2+ 1+4, C2xD4:C4, C23.24D4, C23.36D4, C23.37D4, C23.33C23, C2xC8oD4, C2x2+ 1+4, 2+ 1+4:5C4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C24, C2xC22:C4, C23xC4, C22xD4, C22xC22:C4, D4oD8, D4oSD16, 2+ 1+4:5C4

Smallest permutation representation of 2+ 1+4:5C4
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 23)(2 22)(3 21)(4 24)(5 11)(6 10)(7 9)(8 12)(13 26)(14 25)(15 28)(16 27)(17 31)(18 30)(19 29)(20 32)
(1 9 3 11)(2 10 4 12)(5 23 7 21)(6 24 8 22)(13 32 15 30)(14 29 16 31)(17 25 19 27)(18 26 20 28)
(1 22)(2 23)(3 24)(4 21)(5 10)(6 11)(7 12)(8 9)(13 19)(14 20)(15 17)(16 18)(25 32)(26 29)(27 30)(28 31)
(1 26 22 14)(2 25 23 13)(3 28 24 16)(4 27 21 15)(5 32 12 19)(6 31 9 18)(7 30 10 17)(8 29 11 20)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23)(2,22)(3,21)(4,24)(5,11)(6,10)(7,9)(8,12)(13,26)(14,25)(15,28)(16,27)(17,31)(18,30)(19,29)(20,32), (1,9,3,11)(2,10,4,12)(5,23,7,21)(6,24,8,22)(13,32,15,30)(14,29,16,31)(17,25,19,27)(18,26,20,28), (1,22)(2,23)(3,24)(4,21)(5,10)(6,11)(7,12)(8,9)(13,19)(14,20)(15,17)(16,18)(25,32)(26,29)(27,30)(28,31), (1,26,22,14)(2,25,23,13)(3,28,24,16)(4,27,21,15)(5,32,12,19)(6,31,9,18)(7,30,10,17)(8,29,11,20)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23)(2,22)(3,21)(4,24)(5,11)(6,10)(7,9)(8,12)(13,26)(14,25)(15,28)(16,27)(17,31)(18,30)(19,29)(20,32), (1,9,3,11)(2,10,4,12)(5,23,7,21)(6,24,8,22)(13,32,15,30)(14,29,16,31)(17,25,19,27)(18,26,20,28), (1,22)(2,23)(3,24)(4,21)(5,10)(6,11)(7,12)(8,9)(13,19)(14,20)(15,17)(16,18)(25,32)(26,29)(27,30)(28,31), (1,26,22,14)(2,25,23,13)(3,28,24,16)(4,27,21,15)(5,32,12,19)(6,31,9,18)(7,30,10,17)(8,29,11,20) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,23),(2,22),(3,21),(4,24),(5,11),(6,10),(7,9),(8,12),(13,26),(14,25),(15,28),(16,27),(17,31),(18,30),(19,29),(20,32)], [(1,9,3,11),(2,10,4,12),(5,23,7,21),(6,24,8,22),(13,32,15,30),(14,29,16,31),(17,25,19,27),(18,26,20,28)], [(1,22),(2,23),(3,24),(4,21),(5,10),(6,11),(7,12),(8,9),(13,19),(14,20),(15,17),(16,18),(25,32),(26,29),(27,30),(28,31)], [(1,26,22,14),(2,25,23,13),(3,28,24,16),(4,27,21,15),(5,32,12,19),(6,31,9,18),(7,30,10,17),(8,29,11,20)]])

44 conjugacy classes

class 1 2A2B2C2D···2I2J···2O4A···4H4I···4R8A8B8C8D8E···8J
order12222···22···24···44···488888···8
size11112···24···42···24···422224···4

44 irreducible representations

dim11111111122244
type++++++++++++
imageC1C2C2C2C2C2C2C2C4D4D4D4D4oD8D4oSD16
kernel2+ 1+4:5C4C2xD4:C4C23.24D4C23.36D4C23.37D4C23.33C23C2xC8oD4C2x2+ 1+42+ 1+4C2xD4C2xQ8C4oD4C2C2
# reps133331111631422

Matrix representation of 2+ 1+4:5C4 in GL6(F17)

100000
010000
0000016
000010
0001600
001000
,
100000
010000
000001
0000160
0001600
001000
,
1600000
0160000
000100
0016000
000001
0000160
,
1600000
310000
001000
0001600
0000160
000001
,
11130000
560000
0000314
00001414
0031400
00141400

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,1,0,0,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[16,3,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[11,5,0,0,0,0,13,6,0,0,0,0,0,0,0,0,3,14,0,0,0,0,14,14,0,0,3,14,0,0,0,0,14,14,0,0] >;

2+ 1+4:5C4 in GAP, Magma, Sage, TeX

2_+^{1+4}\rtimes_5C_4
% in TeX

G:=Group("ES+(2,2):5C4");
// GroupNames label

G:=SmallGroup(128,1629);
// by ID

G=gap.SmallGroup(128,1629);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,521,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=d^2=e^4=1,c^2=a^2,b*a*b=e*a*e^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=e*c*e^-1=a^2*c,e*d*e^-1=c*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<