extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D8)⋊1C2 = D8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):1C2 | 128,918 |
(C2×C4○D8)⋊2C2 = C24.103D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):2C2 | 128,1734 |
(C2×C4○D8)⋊3C2 = (C2×D4)⋊21D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):3C2 | 128,1744 |
(C2×C4○D8)⋊4C2 = (C2×Q8)⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):4C2 | 128,1745 |
(C2×C4○D8)⋊5C2 = C42.443D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):5C2 | 128,1767 |
(C2×C4○D8)⋊6C2 = C42.18C23 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):6C2 | 128,1777 |
(C2×C4○D8)⋊7C2 = C24.144D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):7C2 | 128,1782 |
(C2×C4○D8)⋊8C2 = C42.360D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):8C2 | 128,1879 |
(C2×C4○D8)⋊9C2 = D8⋊12D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):9C2 | 128,2012 |
(C2×C4○D8)⋊10C2 = SD16⋊10D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):10C2 | 128,2014 |
(C2×C4○D8)⋊11C2 = D8⋊13D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):11C2 | 128,2015 |
(C2×C4○D8)⋊12C2 = SD16⋊11D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):12C2 | 128,2016 |
(C2×C4○D8)⋊13C2 = Q16⋊12D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):13C2 | 128,2017 |
(C2×C4○D8)⋊14C2 = Q16⋊13D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):14C2 | 128,2019 |
(C2×C4○D8)⋊15C2 = C2×C4○D16 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):15C2 | 128,2143 |
(C2×C4○D8)⋊16C2 = C24.110D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):16C2 | 128,1786 |
(C2×C4○D8)⋊17C2 = (C2×C8)⋊13D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):17C2 | 128,1792 |
(C2×C4○D8)⋊18C2 = (C2×C8)⋊14D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):18C2 | 128,1793 |
(C2×C4○D8)⋊19C2 = M4(2).10C23 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | 4 | (C2xC4oD8):19C2 | 128,1799 |
(C2×C4○D8)⋊20C2 = C42.247D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):20C2 | 128,1882 |
(C2×C4○D8)⋊21C2 = M4(2)⋊10D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):21C2 | 128,1886 |
(C2×C4○D8)⋊22C2 = M4(2)⋊11D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):22C2 | 128,1887 |
(C2×C4○D8)⋊23C2 = D8⋊10D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):23C2 | 128,1999 |
(C2×C4○D8)⋊24C2 = SD16⋊7D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):24C2 | 128,2000 |
(C2×C4○D8)⋊25C2 = SD16⋊8D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):25C2 | 128,2001 |
(C2×C4○D8)⋊26C2 = Q16⋊10D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):26C2 | 128,2003 |
(C2×C4○D8)⋊27C2 = C2×C16⋊C22 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):27C2 | 128,2144 |
(C2×C4○D8)⋊28C2 = D16⋊C22 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | 4 | (C2xC4oD8):28C2 | 128,2146 |
(C2×C4○D8)⋊29C2 = C2×D8⋊C22 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):29C2 | 128,2312 |
(C2×C4○D8)⋊30C2 = C2×D4○D8 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):30C2 | 128,2313 |
(C2×C4○D8)⋊31C2 = C2×D4○SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8):31C2 | 128,2314 |
(C2×C4○D8)⋊32C2 = C2×Q8○D8 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8):32C2 | 128,2315 |
(C2×C4○D8)⋊33C2 = C8.C24 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | 4 | (C2xC4oD8):33C2 | 128,2316 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D8).1C2 = M4(2).43D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8).1C2 | 128,608 |
(C2×C4○D8).2C2 = C42.326D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8).2C2 | 128,706 |
(C2×C4○D8).3C2 = C23.24D8 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8).3C2 | 128,870 |
(C2×C4○D8).4C2 = C2×D8.C4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8).4C2 | 128,874 |
(C2×C4○D8).5C2 = D8.10D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8).5C2 | 128,921 |
(C2×C4○D8).6C2 = C42.19C23 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8).6C2 | 128,1778 |
(C2×C4○D8).7C2 = C42.116D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8).7C2 | 128,707 |
(C2×C4○D8).8C2 = M4(2).30D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | 4 | (C2xC4oD8).8C2 | 128,708 |
(C2×C4○D8).9C2 = C23.39D8 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8).9C2 | 128,871 |
(C2×C4○D8).10C2 = C23.20SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | 4 | (C2xC4oD8).10C2 | 128,875 |
(C2×C4○D8).11C2 = C2×D8⋊2C4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8).11C2 | 128,876 |
(C2×C4○D8).12C2 = C23.13D8 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | 4 | (C2xC4oD8).12C2 | 128,877 |
(C2×C4○D8).13C2 = C23.21SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | 4 | (C2xC4oD8).13C2 | 128,880 |
(C2×C4○D8).14C2 = C42.383D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8).14C2 | 128,1675 |
(C2×C4○D8).15C2 = C42.280C23 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8).15C2 | 128,1683 |
(C2×C4○D8).16C2 = C42.281C23 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8).16C2 | 128,1684 |
(C2×C4○D8).17C2 = C2×C8.26D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | | (C2xC4oD8).17C2 | 128,1686 |
(C2×C4○D8).18C2 = M4(2)○D8 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 32 | 4 | (C2xC4oD8).18C2 | 128,1689 |
(C2×C4○D8).19C2 = M4(2).20D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8).19C2 | 128,1888 |
(C2×C4○D8).20C2 = C2×Q32⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×C4○D8 | 64 | | (C2xC4oD8).20C2 | 128,2145 |
(C2×C4○D8).21C2 = C4×C4○D8 | φ: trivial image | 64 | | (C2xC4oD8).21C2 | 128,1671 |
(C2×C4○D8).22C2 = C2×C8○D8 | φ: trivial image | 32 | | (C2xC4oD8).22C2 | 128,1685 |