p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4○D4⋊3D4, (C2×D4)⋊21D4, D4.47(C2×D4), C2.7(D4○D8), Q8.47(C2×D4), C22⋊D8⋊14C2, D4⋊D4⋊17C2, C4.84C22≀C2, C22⋊SD16⋊4C2, (C2×D8)⋊39C22, C4⋊C4.14C23, C4⋊D4⋊2C22, (C2×Q8).231D4, C4.49(C22×D4), C22⋊Q8⋊2C22, D4.7D4⋊17C2, C22⋊C8⋊10C22, (C2×C8).302C23, (C2×C4).231C24, (C22×C8)⋊15C22, (C2×Q16)⋊39C22, C22.3C22≀C2, (C2×D4).31C23, C23.235(C2×D4), (C2×Q8).24C23, D4⋊C4⋊14C22, C2.10(D4○SD16), Q8⋊C4⋊16C22, (C2×SD16)⋊71C22, C23.36D4⋊3C2, (C2×M4(2))⋊6C22, (C2×2+ 1+4)⋊2C2, (C22×C4).279C23, C22.491(C22×D4), C22.31C24⋊3C2, (C22×D4).328C22, (C2×C4○D8)⋊3C2, (C2×C4⋊C4)⋊48C22, (C2×C8⋊C22)⋊10C2, (C2×C4).458(C2×D4), (C2×C4○D4)⋊5C22, (C2×D4⋊C4)⋊28C2, (C22×C8)⋊C2⋊7C2, C2.49(C2×C22≀C2), SmallGroup(128,1744)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×D4)⋊21D4
G = < a,b,c,d,e | a2=b4=c2=d4=e2=1, ab=ba, ac=ca, ad=da, eae=ab2, cbc=dbd-1=ebe=b-1, dcd-1=bc, ece=b-1c, ede=d-1 >
Subgroups: 836 in 382 conjugacy classes, 108 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C2×C4⋊C4, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22×C8, C2×M4(2), C2×D8, C2×D8, C2×SD16, C2×SD16, C2×Q16, C4○D8, C8⋊C22, C22×D4, C22×D4, C22×D4, C2×C4○D4, C2×C4○D4, C2×C4○D4, 2+ 1+4, (C22×C8)⋊C2, C2×D4⋊C4, C23.36D4, C22⋊D8, D4⋊D4, C22⋊SD16, D4.7D4, C22.31C24, C2×C4○D8, C2×C8⋊C22, C2×2+ 1+4, (C2×D4)⋊21D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, C2×C22≀C2, D4○D8, D4○SD16, (C2×D4)⋊21D4
(1 9)(2 10)(3 11)(4 12)(5 30)(6 31)(7 32)(8 29)(13 17)(14 18)(15 19)(16 20)(21 27)(22 28)(23 25)(24 26)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 2)(3 4)(6 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(22 24)(26 28)(29 31)
(1 30 9 5)(2 29 10 8)(3 32 11 7)(4 31 12 6)(13 27 19 23)(14 26 20 22)(15 25 17 21)(16 28 18 24)
(1 26)(2 25)(3 28)(4 27)(5 20)(6 19)(7 18)(8 17)(9 22)(10 21)(11 24)(12 23)(13 31)(14 30)(15 29)(16 32)
G:=sub<Sym(32)| (1,9)(2,10)(3,11)(4,12)(5,30)(6,31)(7,32)(8,29)(13,17)(14,18)(15,19)(16,20)(21,27)(22,28)(23,25)(24,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(6,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(22,24)(26,28)(29,31), (1,30,9,5)(2,29,10,8)(3,32,11,7)(4,31,12,6)(13,27,19,23)(14,26,20,22)(15,25,17,21)(16,28,18,24), (1,26)(2,25)(3,28)(4,27)(5,20)(6,19)(7,18)(8,17)(9,22)(10,21)(11,24)(12,23)(13,31)(14,30)(15,29)(16,32)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,30)(6,31)(7,32)(8,29)(13,17)(14,18)(15,19)(16,20)(21,27)(22,28)(23,25)(24,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(6,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(22,24)(26,28)(29,31), (1,30,9,5)(2,29,10,8)(3,32,11,7)(4,31,12,6)(13,27,19,23)(14,26,20,22)(15,25,17,21)(16,28,18,24), (1,26)(2,25)(3,28)(4,27)(5,20)(6,19)(7,18)(8,17)(9,22)(10,21)(11,24)(12,23)(13,31)(14,30)(15,29)(16,32) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,30),(6,31),(7,32),(8,29),(13,17),(14,18),(15,19),(16,20),(21,27),(22,28),(23,25),(24,26)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,2),(3,4),(6,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(22,24),(26,28),(29,31)], [(1,30,9,5),(2,29,10,8),(3,32,11,7),(4,31,12,6),(13,27,19,23),(14,26,20,22),(15,25,17,21),(16,28,18,24)], [(1,26),(2,25),(3,28),(4,27),(5,20),(6,19),(7,18),(8,17),(9,22),(10,21),(11,24),(12,23),(13,31),(14,30),(15,29),(16,32)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 2N | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4○D8 | D4○SD16 |
kernel | (C2×D4)⋊21D4 | (C22×C8)⋊C2 | C2×D4⋊C4 | C23.36D4 | C22⋊D8 | D4⋊D4 | C22⋊SD16 | D4.7D4 | C22.31C24 | C2×C4○D8 | C2×C8⋊C22 | C2×2+ 1+4 | C2×D4 | C2×Q8 | C4○D4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 7 | 1 | 4 | 2 | 2 |
Matrix representation of (C2×D4)⋊21D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 1 | 0 |
0 | 0 | 0 | 16 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
12 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 16 |
10 | 4 | 0 | 0 | 0 | 0 |
13 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 14 |
0 | 0 | 0 | 0 | 14 | 14 |
7 | 13 | 0 | 0 | 0 | 0 |
12 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 14 | 11 | 6 |
0 | 0 | 14 | 14 | 6 | 6 |
0 | 0 | 0 | 0 | 14 | 3 |
0 | 0 | 0 | 0 | 3 | 3 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,16,0,0,0,0,16,0,16,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,12,0,0,0,0,0,16,0,0,0,0,0,0,16,0,16,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,16],[10,13,0,0,0,0,4,7,0,0,0,0,0,0,3,14,0,0,0,0,14,14,0,0,0,0,0,0,3,14,0,0,0,0,14,14],[7,12,0,0,0,0,13,10,0,0,0,0,0,0,3,14,0,0,0,0,14,14,0,0,0,0,11,6,14,3,0,0,6,6,3,3] >;
(C2×D4)⋊21D4 in GAP, Magma, Sage, TeX
(C_2\times D_4)\rtimes_{21}D_4
% in TeX
G:=Group("(C2xD4):21D4");
// GroupNames label
G:=SmallGroup(128,1744);
// by ID
G=gap.SmallGroup(128,1744);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,521,248,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a*b^2,c*b*c=d*b*d^-1=e*b*e=b^-1,d*c*d^-1=b*c,e*c*e=b^-1*c,e*d*e=d^-1>;
// generators/relations