extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×M4(2))⋊1C2 = C4×C8⋊C22 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):1C2 | 128,1676 |
(C4×M4(2))⋊2C2 = C4×C8.C22 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):2C2 | 128,1677 |
(C4×M4(2))⋊3C2 = M4(2).51D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 16 | 4 | (C4xM4(2)):3C2 | 128,1688 |
(C4×M4(2))⋊4C2 = M4(2)⋊7D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):4C2 | 128,1883 |
(C4×M4(2))⋊5C2 = M4(2)⋊8D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):5C2 | 128,1884 |
(C4×M4(2))⋊6C2 = M4(2)⋊9D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):6C2 | 128,1885 |
(C4×M4(2))⋊7C2 = C42.255D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):7C2 | 128,1903 |
(C4×M4(2))⋊8C2 = C42.256D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):8C2 | 128,1904 |
(C4×M4(2))⋊9C2 = C42.259D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):9C2 | 128,1914 |
(C4×M4(2))⋊10C2 = C42.260D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):10C2 | 128,1915 |
(C4×M4(2))⋊11C2 = C42.261D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):11C2 | 128,1916 |
(C4×M4(2))⋊12C2 = C42.47D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):12C2 | 128,215 |
(C4×M4(2))⋊13C2 = C42.400D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):13C2 | 128,216 |
(C4×M4(2))⋊14C2 = D4⋊4M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):14C2 | 128,221 |
(C4×M4(2))⋊15C2 = D4⋊5M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):15C2 | 128,222 |
(C4×M4(2))⋊16C2 = C42.66D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):16C2 | 128,256 |
(C4×M4(2))⋊17C2 = C42.405D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):17C2 | 128,257 |
(C4×M4(2))⋊18C2 = C42.407D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):18C2 | 128,259 |
(C4×M4(2))⋊19C2 = C42.376D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):19C2 | 128,261 |
(C4×M4(2))⋊20C2 = C4×C4.D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):20C2 | 128,487 |
(C4×M4(2))⋊21C2 = C4×C4≀C2 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):21C2 | 128,490 |
(C4×M4(2))⋊22C2 = D4.C42 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):22C2 | 128,491 |
(C4×M4(2))⋊23C2 = C42.427D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 16 | 4 | (C4xM4(2)):23C2 | 128,664 |
(C4×M4(2))⋊24C2 = M4(2)⋊12D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):24C2 | 128,697 |
(C4×M4(2))⋊25C2 = C42.115D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):25C2 | 128,699 |
(C4×M4(2))⋊26C2 = M4(2)⋊13D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):26C2 | 128,712 |
(C4×M4(2))⋊27C2 = M4(2)○2M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):27C2 | 128,1605 |
(C4×M4(2))⋊28C2 = D4.5C42 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):28C2 | 128,1607 |
(C4×M4(2))⋊29C2 = C42.677C23 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):29C2 | 128,1652 |
(C4×M4(2))⋊30C2 = C42.259C23 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):30C2 | 128,1653 |
(C4×M4(2))⋊31C2 = C42.260C23 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):31C2 | 128,1654 |
(C4×M4(2))⋊32C2 = C42.261C23 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):32C2 | 128,1655 |
(C4×M4(2))⋊33C2 = D4×M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):33C2 | 128,1666 |
(C4×M4(2))⋊34C2 = M4(2)⋊23D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):34C2 | 128,1667 |
(C4×M4(2))⋊35C2 = C42.290C23 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):35C2 | 128,1697 |
(C4×M4(2))⋊36C2 = C42.292C23 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):36C2 | 128,1699 |
(C4×M4(2))⋊37C2 = C42.294C23 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):37C2 | 128,1701 |
(C4×M4(2))⋊38C2 = D4⋊6M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):38C2 | 128,1702 |
(C4×M4(2))⋊39C2 = Q8⋊6M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):39C2 | 128,1703 |
(C4×M4(2))⋊40C2 = C42.240D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):40C2 | 128,1870 |
(C4×M4(2))⋊41C2 = C42.242D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)):41C2 | 128,1872 |
(C4×M4(2))⋊42C2 = C42.243D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):42C2 | 128,1873 |
(C4×M4(2))⋊43C2 = C42.244D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)):43C2 | 128,1874 |
(C4×M4(2))⋊44C2 = C4×C8○D4 | φ: trivial image | 64 | | (C4xM4(2)):44C2 | 128,1606 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×M4(2)).1C2 = M4(2)⋊1C8 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).1C2 | 128,297 |
(C4×M4(2)).2C2 = C8⋊1M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).2C2 | 128,301 |
(C4×M4(2)).3C2 = C8.5M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 16 | 4 | (C4xM4(2)).3C2 | 128,897 |
(C4×M4(2)).4C2 = M4(2)⋊5Q8 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).4C2 | 128,1897 |
(C4×M4(2)).5C2 = M4(2)⋊6Q8 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).5C2 | 128,1898 |
(C4×M4(2)).6C2 = C42.262D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).6C2 | 128,1917 |
(C4×M4(2)).7C2 = M4(2)⋊C8 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).7C2 | 128,10 |
(C4×M4(2)).8C2 = C42.3Q8 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).8C2 | 128,15 |
(C4×M4(2)).9C2 = C42.6Q8 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)).9C2 | 128,20 |
(C4×M4(2)).10C2 = C42.26D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).10C2 | 128,23 |
(C4×M4(2)).11C2 = C42.388D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).11C2 | 128,31 |
(C4×M4(2)).12C2 = C42.9Q8 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)).12C2 | 128,32 |
(C4×M4(2)).13C2 = C8⋊9M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).13C2 | 128,183 |
(C4×M4(2)).14C2 = C82⋊15C2 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).14C2 | 128,185 |
(C4×M4(2)).15C2 = C8⋊6M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).15C2 | 128,187 |
(C4×M4(2)).16C2 = C42.401D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).16C2 | 128,217 |
(C4×M4(2)).17C2 = Q8⋊5M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).17C2 | 128,223 |
(C4×M4(2)).18C2 = C42.406D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).18C2 | 128,258 |
(C4×M4(2)).19C2 = C42.408D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).19C2 | 128,260 |
(C4×M4(2)).20C2 = C4×C4.10D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).20C2 | 128,488 |
(C4×M4(2)).21C2 = C4×C8.C4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).21C2 | 128,509 |
(C4×M4(2)).22C2 = C8.6C42 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).22C2 | 128,510 |
(C4×M4(2)).23C2 = C8⋊C4⋊17C4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 16 | 4 | (C4xM4(2)).23C2 | 128,573 |
(C4×M4(2)).24C2 = C42.430D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).24C2 | 128,682 |
(C4×M4(2)).25C2 = C42.114D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).25C2 | 128,698 |
(C4×M4(2)).26C2 = M4(2)⋊7Q8 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 32 | | (C4xM4(2)).26C2 | 128,718 |
(C4×M4(2)).27C2 = M4(2)⋊8Q8 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).27C2 | 128,729 |
(C4×M4(2)).28C2 = C42.128D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).28C2 | 128,730 |
(C4×M4(2)).29C2 = M4(2)⋊9Q8 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).29C2 | 128,1694 |
(C4×M4(2)).30C2 = Q8×M4(2) | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).30C2 | 128,1695 |
(C4×M4(2)).31C2 = C42.241D4 | φ: C2/C1 → C2 ⊆ Out C4×M4(2) | 64 | | (C4xM4(2)).31C2 | 128,1871 |
(C4×M4(2)).32C2 = C8×M4(2) | φ: trivial image | 64 | | (C4xM4(2)).32C2 | 128,181 |