Extensions 1→N→G→Q→1 with N=C2×D16 and Q=C2

Direct product G=N×Q with N=C2×D16 and Q=C2
dρLabelID
C22×D1664C2^2xD16128,2140

Semidirect products G=N:Q with N=C2×D16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D16)⋊1C2 = D87D4φ: C2/C1C2 ⊆ Out C2×D1632(C2xD16):1C2128,916
(C2×D16)⋊2C2 = D88D4φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16):2C2128,918
(C2×D16)⋊3C2 = Q16.10D4φ: C2/C1C2 ⊆ Out C2×D16324+(C2xD16):3C2128,924
(C2×D16)⋊4C2 = D82D4φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16):4C2128,938
(C2×D16)⋊5C2 = C167D4φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16):5C2128,947
(C2×D16)⋊6C2 = C4⋊D16φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16):6C2128,978
(C2×D16)⋊7C2 = C2×D32φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16):7C2128,991
(C2×D16)⋊8C2 = C16⋊D4φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16):8C2128,950
(C2×D16)⋊9C2 = D4.3D8φ: C2/C1C2 ⊆ Out C2×D16324+(C2xD16):9C2128,953
(C2×D16)⋊10C2 = C163D4φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16):10C2128,982
(C2×D16)⋊11C2 = C32⋊C22φ: C2/C1C2 ⊆ Out C2×D16324+(C2xD16):11C2128,995
(C2×D16)⋊12C2 = C2×C16⋊C22φ: C2/C1C2 ⊆ Out C2×D1632(C2xD16):12C2128,2144
(C2×D16)⋊13C2 = D4○D16φ: C2/C1C2 ⊆ Out C2×D16324+(C2xD16):13C2128,2147
(C2×D16)⋊14C2 = C2×C4○D16φ: trivial image64(C2xD16):14C2128,2143

Non-split extensions G=N.Q with N=C2×D16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D16).1C2 = D162C4φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16).1C2128,147
(C2×D16).2C2 = D8.5D4φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16).2C2128,942
(C2×D16).3C2 = C8.21D8φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16).3C2128,981
(C2×D16).4C2 = C2×SD64φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16).4C2128,992
(C2×D16).5C2 = M6(2)⋊C2φ: C2/C1C2 ⊆ Out C2×D16324+(C2xD16).5C2128,151
(C2×D16).6C2 = D164C4φ: C2/C1C2 ⊆ Out C2×D1664(C2xD16).6C2128,909
(C2×D16).7C2 = C4×D16φ: trivial image64(C2xD16).7C2128,904

׿
×
𝔽