direct product, p-group, metabelian, nilpotent (class 5), monomial
Aliases: C2×D32, C8.18D8, C4.6D16, C16.9D4, C32⋊2C22, D16⋊1C22, C16.6C23, C22.14D16, (C2×C32)⋊5C2, (C2×D16)⋊7C2, C8.45(C2×D4), C4.13(C2×D8), (C2×C4).88D8, C2.12(C2×D16), (C2×C8).257D4, (C2×C16).88C22, 2-Sylow(SO-(4,31)), SmallGroup(128,991)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×D32
G = < a,b,c | a2=b32=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 268 in 60 conjugacy classes, 28 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C8, C2×C4, D4, C23, C16, C2×C8, D8, C2×D4, C32, C2×C16, D16, D16, C2×D8, C2×C32, D32, C2×D16, C2×D32
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, D16, C2×D8, D32, C2×D16, C2×D32
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 57)(8 58)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 33)(16 34)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 49)(32 50)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(33 37)(34 36)(38 64)(39 63)(40 62)(41 61)(42 60)(43 59)(44 58)(45 57)(46 56)(47 55)(48 54)(49 53)(50 52)
G:=sub<Sym(64)| (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,49)(32,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(33,37)(34,36)(38,64)(39,63)(40,62)(41,61)(42,60)(43,59)(44,58)(45,57)(46,56)(47,55)(48,54)(49,53)(50,52)>;
G:=Group( (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,49)(32,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(33,37)(34,36)(38,64)(39,63)(40,62)(41,61)(42,60)(43,59)(44,58)(45,57)(46,56)(47,55)(48,54)(49,53)(50,52) );
G=PermutationGroup([[(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,57),(8,58),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,33),(16,34),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,49),(32,50)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(33,37),(34,36),(38,64),(39,63),(40,62),(41,61),(42,60),(43,59),(44,58),(45,57),(46,56),(47,55),(48,54),(49,53),(50,52)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 8A | 8B | 8C | 8D | 16A | ··· | 16H | 32A | ··· | 32P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | ··· | 16 | 32 | ··· | 32 |
size | 1 | 1 | 1 | 1 | 16 | 16 | 16 | 16 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D4 | D8 | D8 | D16 | D16 | D32 |
kernel | C2×D32 | C2×C32 | D32 | C2×D16 | C16 | C2×C8 | C8 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 1 | 4 | 2 | 1 | 1 | 2 | 2 | 4 | 4 | 16 |
Matrix representation of C2×D32 ►in GL3(𝔽97) generated by
96 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 57 | 70 |
0 | 27 | 57 |
96 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 96 |
G:=sub<GL(3,GF(97))| [96,0,0,0,1,0,0,0,1],[1,0,0,0,57,27,0,70,57],[96,0,0,0,1,0,0,0,96] >;
C2×D32 in GAP, Magma, Sage, TeX
C_2\times D_{32}
% in TeX
G:=Group("C2xD32");
// GroupNames label
G:=SmallGroup(128,991);
// by ID
G=gap.SmallGroup(128,991);
# by ID
G:=PCGroup([7,-2,2,2,-2,-2,-2,-2,141,675,346,192,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c|a^2=b^32=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations