p-group, metabelian, nilpotent (class 5), monomial
Aliases: D16.2C4, C16.17D4, C4.11D16, C8.5SD16, M6(2)⋊6C2, C22.3SD32, C16.5(C2×C4), (C2×C8).85D4, (C2×C4).13D8, (C2×D16).5C2, C8.4Q8⋊2C2, C8.17(C22⋊C4), (C2×C16).14C22, C4.17(D4⋊C4), C2.10(C2.D16), SmallGroup(128,151)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M6(2)⋊C2
G = < a,b,c | a32=b2=c2=1, bab=a17, cac=a7b, bc=cb >
Character table of M6(2)⋊C2
| class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 8A | 8B | 8C | 8D | 8E | 16A | 16B | 16C | 16D | 16E | 16F | 32A | 32B | 32C | 32D | 32E | 32F | 32G | 32H | |
| size | 1 | 1 | 2 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
| ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
| ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
| ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
| ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
| ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | i | -i | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
| ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -i | i | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
| ρ7 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | i | -i | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
| ρ8 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | i | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
| ρ9 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
| ρ10 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
| ρ11 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ165+ζ163 | ζ1615-ζ169 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | orthogonal lifted from D16 |
| ρ12 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
| ρ13 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
| ρ14 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -ζ1615+ζ169 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | orthogonal lifted from D16 |
| ρ15 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | orthogonal lifted from D16 |
| ρ16 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ1615-ζ169 | ζ1615-ζ169 | ζ165-ζ163 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | orthogonal lifted from D16 |
| ρ17 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
| ρ18 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from SD32 |
| ρ19 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
| ρ20 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from SD32 |
| ρ21 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from SD32 |
| ρ22 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from SD32 |
| ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | -2ζ165+2ζ163 | -2ζ1615+2ζ169 | 2ζ165-2ζ163 | 2ζ1615-2ζ169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
| ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 2ζ1615-2ζ169 | -2ζ165+2ζ163 | -2ζ1615+2ζ169 | 2ζ165-2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
| ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 2ζ165-2ζ163 | 2ζ1615-2ζ169 | -2ζ165+2ζ163 | -2ζ1615+2ζ169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
| ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | -2ζ1615+2ζ169 | 2ζ165-2ζ163 | 2ζ1615-2ζ169 | -2ζ165+2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 17)(3 19)(5 21)(7 23)(9 25)(11 27)(13 29)(15 31)
(2 8)(3 31)(4 6)(5 29)(7 27)(9 25)(10 32)(11 23)(12 30)(13 21)(14 28)(15 19)(16 26)(18 24)(20 22)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,17)(3,19)(5,21)(7,23)(9,25)(11,27)(13,29)(15,31), (2,8)(3,31)(4,6)(5,29)(7,27)(9,25)(10,32)(11,23)(12,30)(13,21)(14,28)(15,19)(16,26)(18,24)(20,22)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,17)(3,19)(5,21)(7,23)(9,25)(11,27)(13,29)(15,31), (2,8)(3,31)(4,6)(5,29)(7,27)(9,25)(10,32)(11,23)(12,30)(13,21)(14,28)(15,19)(16,26)(18,24)(20,22) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,17),(3,19),(5,21),(7,23),(9,25),(11,27),(13,29),(15,31)], [(2,8),(3,31),(4,6),(5,29),(7,27),(9,25),(10,32),(11,23),(12,30),(13,21),(14,28),(15,19),(16,26),(18,24),(20,22)]])
Matrix representation of M6(2)⋊C2 ►in GL4(𝔽97) generated by
| 89 | 32 | 0 | 2 |
| 42 | 10 | 2 | 0 |
| 54 | 67 | 87 | 55 |
| 85 | 66 | 65 | 8 |
| 96 | 0 | 0 | 0 |
| 0 | 96 | 0 | 0 |
| 42 | 10 | 1 | 0 |
| 89 | 32 | 0 | 1 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 48 | 44 | 26 | 2 |
| 33 | 83 | 2 | 71 |
G:=sub<GL(4,GF(97))| [89,42,54,85,32,10,67,66,0,2,87,65,2,0,55,8],[96,0,42,89,0,96,10,32,0,0,1,0,0,0,0,1],[0,1,48,33,1,0,44,83,0,0,26,2,0,0,2,71] >;
M6(2)⋊C2 in GAP, Magma, Sage, TeX
M_6(2)\rtimes C_2
% in TeX
G:=Group("M6(2):C2"); // GroupNames label
G:=SmallGroup(128,151);
// by ID
G=gap.SmallGroup(128,151);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,422,891,604,1018,248,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c|a^32=b^2=c^2=1,b*a*b=a^17,c*a*c=a^7*b,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of M6(2)⋊C2 in TeX
Character table of M6(2)⋊C2 in TeX