d | ρ | Label | ID | ||
---|---|---|---|---|---|
D4xC22xC4 | 64 | D4xC2^2xC4 | 128,2154 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC4xD4):1C2 = (C2xC4):9D8 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):1C2 | 128,611 | |
(C2xC4xD4):2C2 = C4xC22wrC2 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):2C2 | 128,1031 | |
(C2xC4xD4):3C2 = C4xC4:D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):3C2 | 128,1032 | |
(C2xC4xD4):4C2 = C4xC4:1D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):4C2 | 128,1038 | |
(C2xC4xD4):5C2 = C23.203C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):5C2 | 128,1053 | |
(C2xC4xD4):6C2 = C42:13D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):6C2 | 128,1056 | |
(C2xC4xD4):7C2 = C24.198C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):7C2 | 128,1057 | |
(C2xC4xD4):8C2 = C42:14D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):8C2 | 128,1060 | |
(C2xC4xD4):9C2 = D4xC22:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):9C2 | 128,1070 | |
(C2xC4xD4):10C2 = C24.549C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):10C2 | 128,1071 | |
(C2xC4xD4):11C2 = C23.240C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):11C2 | 128,1090 | |
(C2xC4xD4):12C2 = C24.215C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):12C2 | 128,1093 | |
(C2xC4xD4):13C2 = C24.217C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):13C2 | 128,1095 | |
(C2xC4xD4):14C2 = C24.218C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):14C2 | 128,1096 | |
(C2xC4xD4):15C2 = C24.219C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):15C2 | 128,1098 | |
(C2xC4xD4):16C2 = C23.288C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):16C2 | 128,1120 | |
(C2xC4xD4):17C2 = C42:15D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):17C2 | 128,1124 | |
(C2xC4xD4):18C2 = C42:16D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):18C2 | 128,1129 | |
(C2xC4xD4):19C2 = C24.244C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):19C2 | 128,1139 | |
(C2xC4xD4):20C2 = C23.308C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):20C2 | 128,1140 | |
(C2xC4xD4):21C2 = C24.249C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):21C2 | 128,1146 | |
(C2xC4xD4):22C2 = C23.316C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):22C2 | 128,1148 | |
(C2xC4xD4):23C2 = C23.318C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):23C2 | 128,1150 | |
(C2xC4xD4):24C2 = C24.254C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):24C2 | 128,1152 | |
(C2xC4xD4):25C2 = C23.322C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):25C2 | 128,1154 | |
(C2xC4xD4):26C2 = C23.324C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):26C2 | 128,1156 | |
(C2xC4xD4):27C2 = C24.258C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):27C2 | 128,1157 | |
(C2xC4xD4):28C2 = C23.327C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):28C2 | 128,1159 | |
(C2xC4xD4):29C2 = C23.328C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):29C2 | 128,1160 | |
(C2xC4xD4):30C2 = C24.269C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):30C2 | 128,1175 | |
(C2xC4xD4):31C2 = C23.344C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):31C2 | 128,1176 | |
(C2xC4xD4):32C2 = C23.345C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):32C2 | 128,1177 | |
(C2xC4xD4):33C2 = C24.276C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):33C2 | 128,1187 | |
(C2xC4xD4):34C2 = C23.356C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):34C2 | 128,1188 | |
(C2xC4xD4):35C2 = C24.278C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):35C2 | 128,1189 | |
(C2xC4xD4):36C2 = C23.359C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):36C2 | 128,1191 | |
(C2xC4xD4):37C2 = C24.282C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):37C2 | 128,1193 | |
(C2xC4xD4):38C2 = C24.283C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):38C2 | 128,1195 | |
(C2xC4xD4):39C2 = C23.364C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):39C2 | 128,1196 | |
(C2xC4xD4):40C2 = C23.367C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):40C2 | 128,1199 | |
(C2xC4xD4):41C2 = C23.434C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):41C2 | 128,1266 | |
(C2xC4xD4):42C2 = C42:17D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):42C2 | 128,1267 | |
(C2xC4xD4):43C2 = C42:18D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):43C2 | 128,1269 | |
(C2xC4xD4):44C2 = C42:19D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):44C2 | 128,1272 | |
(C2xC4xD4):45C2 = C42:20D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):45C2 | 128,1273 | |
(C2xC4xD4):46C2 = C23.443C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):46C2 | 128,1275 | |
(C2xC4xD4):47C2 = C42:21D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):47C2 | 128,1276 | |
(C2xC4xD4):48C2 = C42:22D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):48C2 | 128,1330 | |
(C2xC4xD4):49C2 = C23.500C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):49C2 | 128,1332 | |
(C2xC4xD4):50C2 = C23.502C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):50C2 | 128,1334 | |
(C2xC4xD4):51C2 = C42:24D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):51C2 | 128,1335 | |
(C2xC4xD4):52C2 = C23.530C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):52C2 | 128,1362 | |
(C2xC4xD4):53C2 = C42:29D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):53C2 | 128,1363 | |
(C2xC4xD4):54C2 = C23.535C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):54C2 | 128,1367 | |
(C2xC4xD4):55C2 = C42:30D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):55C2 | 128,1368 | |
(C2xC4xD4):56C2 = C2xC4xD8 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):56C2 | 128,1668 | |
(C2xC4xD4):57C2 = C2xD8:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):57C2 | 128,1674 | |
(C2xC4xD4):58C2 = C4xC8:C22 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):58C2 | 128,1676 | |
(C2xC4xD4):59C2 = C2xC4:D8 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):59C2 | 128,1761 | |
(C2xC4xD4):60C2 = C2xD4.2D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):60C2 | 128,1763 | |
(C2xC4xD4):61C2 = C42.211D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):61C2 | 128,1768 | |
(C2xC4xD4):62C2 = C42.221D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):62C2 | 128,1832 | |
(C2xC4xD4):63C2 = C42.225D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):63C2 | 128,1837 | |
(C2xC4xD4):64C2 = C42.227D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):64C2 | 128,1841 | |
(C2xC4xD4):65C2 = C42.232D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):65C2 | 128,1846 | |
(C2xC4xD4):66C2 = C2xC22.11C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):66C2 | 128,2157 | |
(C2xC4xD4):67C2 = C2xC23.33C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):67C2 | 128,2159 | |
(C2xC4xD4):68C2 = C4x2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):68C2 | 128,2161 | |
(C2xC4xD4):69C2 = C2xC22.19C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):69C2 | 128,2167 | |
(C2xC4xD4):70C2 = C2xC23.36C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):70C2 | 128,2171 | |
(C2xC4xD4):71C2 = C2xC22.26C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):71C2 | 128,2174 | |
(C2xC4xD4):72C2 = C2xC22.32C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):72C2 | 128,2182 | |
(C2xC4xD4):73C2 = C2xC22.33C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):73C2 | 128,2183 | |
(C2xC4xD4):74C2 = C2xC22.34C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):74C2 | 128,2184 | |
(C2xC4xD4):75C2 = C2xC22.36C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):75C2 | 128,2186 | |
(C2xC4xD4):76C2 = C22.48C25 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):76C2 | 128,2191 | |
(C2xC4xD4):77C2 = C22.49C25 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):77C2 | 128,2192 | |
(C2xC4xD4):78C2 = C2xD42 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):78C2 | 128,2194 | |
(C2xC4xD4):79C2 = C2xD4:5D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):79C2 | 128,2195 | |
(C2xC4xD4):80C2 = C2xD4:6D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):80C2 | 128,2196 | |
(C2xC4xD4):81C2 = C2xQ8:5D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):81C2 | 128,2197 | |
(C2xC4xD4):82C2 = C2xQ8:6D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):82C2 | 128,2199 | |
(C2xC4xD4):83C2 = D4xC4oD4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):83C2 | 128,2200 | |
(C2xC4xD4):84C2 = C2xC22.45C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):84C2 | 128,2201 | |
(C2xC4xD4):85C2 = C2xC22.47C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):85C2 | 128,2203 | |
(C2xC4xD4):86C2 = C2xC22.49C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):86C2 | 128,2205 | |
(C2xC4xD4):87C2 = C22.64C25 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):87C2 | 128,2207 | |
(C2xC4xD4):88C2 = C2xC22.53C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4):88C2 | 128,2211 | |
(C2xC4xD4):89C2 = C22.70C25 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):89C2 | 128,2213 | |
(C2xC4xD4):90C2 = C4:2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):90C2 | 128,2228 | |
(C2xC4xD4):91C2 = C22.94C25 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):91C2 | 128,2237 | |
(C2xC4xD4):92C2 = C22.95C25 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):92C2 | 128,2238 | |
(C2xC4xD4):93C2 = C22.102C25 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):93C2 | 128,2245 | |
(C2xC4xD4):94C2 = C22.108C25 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):94C2 | 128,2251 | |
(C2xC4xD4):95C2 = C23.144C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4):95C2 | 128,2252 | |
(C2xC4xD4):96C2 = C2xC4xC4oD4 | φ: trivial image | 64 | (C2xC4xD4):96C2 | 128,2156 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC4xD4).1C2 = C23.8M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).1C2 | 128,191 | |
(C2xC4xD4).2C2 = C42.393D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).2C2 | 128,192 | |
(C2xC4xD4).3C2 = C23:M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).3C2 | 128,197 | |
(C2xC4xD4).4C2 = C42.43D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).4C2 | 128,198 | |
(C2xC4xD4).5C2 = C2xD4:C8 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).5C2 | 128,206 | |
(C2xC4xD4).6C2 = C42.398D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).6C2 | 128,210 | |
(C2xC4xD4).7C2 = D4:M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).7C2 | 128,218 | |
(C2xC4xD4).8C2 = D4:5M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).8C2 | 128,222 | |
(C2xC4xD4).9C2 = C4xC23:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).9C2 | 128,486 | |
(C2xC4xD4).10C2 = C4xC4.D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).10C2 | 128,487 | |
(C2xC4xD4).11C2 = C4xD4:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).11C2 | 128,492 | |
(C2xC4xD4).12C2 = D4:C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).12C2 | 128,494 | |
(C2xC4xD4).13C2 = C24.167C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).13C2 | 128,531 | |
(C2xC4xD4).14C2 = C42.96D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).14C2 | 128,532 | |
(C2xC4xD4).15C2 = C42.98D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).15C2 | 128,534 | |
(C2xC4xD4).16C2 = C42.100D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).16C2 | 128,536 | |
(C2xC4xD4).17C2 = C2.(C4xD8) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).17C2 | 128,594 | |
(C2xC4xD4).18C2 = D4:(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).18C2 | 128,596 | |
(C2xC4xD4).19C2 = C23.22M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).19C2 | 128,601 | |
(C2xC4xD4).20C2 = C23:2M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).20C2 | 128,602 | |
(C2xC4xD4).21C2 = (C2xSD16):14C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).21C2 | 128,609 | |
(C2xC4xD4).22C2 = C42.325D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).22C2 | 128,686 | |
(C2xC4xD4).23C2 = C42.109D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).23C2 | 128,687 | |
(C2xC4xD4).24C2 = D4:4C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).24C2 | 128,1007 | |
(C2xC4xD4).25C2 = C42:42D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).25C2 | 128,1022 | |
(C2xC4xD4).26C2 = C43:9C2 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).26C2 | 128,1025 | |
(C2xC4xD4).27C2 = C4xC22.D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).27C2 | 128,1033 | |
(C2xC4xD4).28C2 = C4xC4.4D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).28C2 | 128,1035 | |
(C2xC4xD4).29C2 = C24.547C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).29C2 | 128,1050 | |
(C2xC4xD4).30C2 = C23.201C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).30C2 | 128,1051 | |
(C2xC4xD4).31C2 = C24.195C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).31C2 | 128,1054 | |
(C2xC4xD4).32C2 = C42.160D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).32C2 | 128,1058 | |
(C2xC4xD4).33C2 = D4xC4:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).33C2 | 128,1080 | |
(C2xC4xD4).34C2 = C23.231C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).34C2 | 128,1081 | |
(C2xC4xD4).35C2 = C23.234C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).35C2 | 128,1084 | |
(C2xC4xD4).36C2 = C23.235C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).36C2 | 128,1085 | |
(C2xC4xD4).37C2 = C23.236C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).37C2 | 128,1086 | |
(C2xC4xD4).38C2 = C24.212C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).38C2 | 128,1089 | |
(C2xC4xD4).39C2 = C23.241C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).39C2 | 128,1091 | |
(C2xC4xD4).40C2 = C24.220C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).40C2 | 128,1099 | |
(C2xC4xD4).41C2 = C23.295C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).41C2 | 128,1127 | |
(C2xC4xD4).42C2 = C42.163D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).42C2 | 128,1130 | |
(C2xC4xD4).43C2 = C23.309C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).43C2 | 128,1141 | |
(C2xC4xD4).44C2 = C23.315C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).44C2 | 128,1147 | |
(C2xC4xD4).45C2 = C24.252C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).45C2 | 128,1149 | |
(C2xC4xD4).46C2 = C24.563C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).46C2 | 128,1151 | |
(C2xC4xD4).47C2 = C24.271C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).47C2 | 128,1179 | |
(C2xC4xD4).48C2 = C23.349C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).48C2 | 128,1181 | |
(C2xC4xD4).49C2 = C23.350C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).49C2 | 128,1182 | |
(C2xC4xD4).50C2 = C23.352C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).50C2 | 128,1184 | |
(C2xC4xD4).51C2 = C23.354C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).51C2 | 128,1186 | |
(C2xC4xD4).52C2 = C23.360C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).52C2 | 128,1192 | |
(C2xC4xD4).53C2 = C24.286C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).53C2 | 128,1198 | |
(C2xC4xD4).54C2 = C23.368C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).54C2 | 128,1200 | |
(C2xC4xD4).55C2 = C23.385C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).55C2 | 128,1217 | |
(C2xC4xD4).56C2 = C24.299C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).56C2 | 128,1218 | |
(C2xC4xD4).57C2 = C24.300C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).57C2 | 128,1219 | |
(C2xC4xD4).58C2 = C42.165D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).58C2 | 128,1268 | |
(C2xC4xD4).59C2 = C42.166D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).59C2 | 128,1270 | |
(C2xC4xD4).60C2 = C42.167D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).60C2 | 128,1274 | |
(C2xC4xD4).61C2 = C42.170D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).61C2 | 128,1279 | |
(C2xC4xD4).62C2 = C42.172D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).62C2 | 128,1294 | |
(C2xC4xD4).63C2 = C42.173D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).63C2 | 128,1295 | |
(C2xC4xD4).64C2 = C24.583C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).64C2 | 128,1296 | |
(C2xC4xD4).65C2 = C42.175D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).65C2 | 128,1298 | |
(C2xC4xD4).66C2 = C23.479C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).66C2 | 128,1311 | |
(C2xC4xD4).67C2 = C42.178D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).67C2 | 128,1312 | |
(C2xC4xD4).68C2 = C42.190D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).68C2 | 128,1365 | |
(C2xC4xD4).69C2 = C24.374C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).69C2 | 128,1370 | |
(C2xC4xD4).70C2 = C2xC8:9D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).70C2 | 128,1659 | |
(C2xC4xD4).71C2 = C2xC8:6D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).71C2 | 128,1660 | |
(C2xC4xD4).72C2 = D4xM4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).72C2 | 128,1666 | |
(C2xC4xD4).73C2 = C2xC4xSD16 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).73C2 | 128,1669 | |
(C2xC4xD4).74C2 = C2xSD16:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).74C2 | 128,1672 | |
(C2xC4xD4).75C2 = C42.691C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).75C2 | 128,1704 | |
(C2xC4xD4).76C2 = C23:3M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).76C2 | 128,1705 | |
(C2xC4xD4).77C2 = D4:7M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).77C2 | 128,1706 | |
(C2xC4xD4).78C2 = C42.693C23 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).78C2 | 128,1707 | |
(C2xC4xD4).79C2 = C2xD4.D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).79C2 | 128,1762 | |
(C2xC4xD4).80C2 = C2xD4:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).80C2 | 128,1802 | |
(C2xC4xD4).81C2 = C2xD4:2Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).81C2 | 128,1803 | |
(C2xC4xD4).82C2 = C2xD4.Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).82C2 | 128,1804 | |
(C2xC4xD4).83C2 = C42.219D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).83C2 | 128,1809 | |
(C2xC4xD4).84C2 = C42.222D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).84C2 | 128,1833 | |
(C2xC4xD4).85C2 = C42.228D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).85C2 | 128,1842 | |
(C2xC4xD4).86C2 = C2xD4xQ8 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).86C2 | 128,2198 | |
(C2xC4xD4).87C2 = C2xC22.46C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).87C2 | 128,2202 | |
(C2xC4xD4).88C2 = C2xD4:3Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).88C2 | 128,2204 | |
(C2xC4xD4).89C2 = C2xC22.50C24 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 64 | (C2xC4xD4).89C2 | 128,2206 | |
(C2xC4xD4).90C2 = C22.90C25 | φ: C2/C1 → C2 ⊆ Out C2xC4xD4 | 32 | (C2xC4xD4).90C2 | 128,2233 | |
(C2xC4xD4).91C2 = D4xC42 | φ: trivial image | 64 | (C2xC4xD4).91C2 | 128,1003 | |
(C2xC4xD4).92C2 = D4xC2xC8 | φ: trivial image | 64 | (C2xC4xD4).92C2 | 128,1658 |