Extensions 1→N→G→Q→1 with N=C2xC4xD4 and Q=C2

Direct product G=NxQ with N=C2xC4xD4 and Q=C2
dρLabelID
D4xC22xC464D4xC2^2xC4128,2154

Semidirect products G=N:Q with N=C2xC4xD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC4xD4):1C2 = (C2xC4):9D8φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):1C2128,611
(C2xC4xD4):2C2 = C4xC22wrC2φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):2C2128,1031
(C2xC4xD4):3C2 = C4xC4:D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):3C2128,1032
(C2xC4xD4):4C2 = C4xC4:1D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):4C2128,1038
(C2xC4xD4):5C2 = C23.203C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):5C2128,1053
(C2xC4xD4):6C2 = C42:13D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):6C2128,1056
(C2xC4xD4):7C2 = C24.198C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):7C2128,1057
(C2xC4xD4):8C2 = C42:14D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):8C2128,1060
(C2xC4xD4):9C2 = D4xC22:C4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):9C2128,1070
(C2xC4xD4):10C2 = C24.549C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):10C2128,1071
(C2xC4xD4):11C2 = C23.240C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):11C2128,1090
(C2xC4xD4):12C2 = C24.215C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):12C2128,1093
(C2xC4xD4):13C2 = C24.217C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):13C2128,1095
(C2xC4xD4):14C2 = C24.218C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):14C2128,1096
(C2xC4xD4):15C2 = C24.219C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):15C2128,1098
(C2xC4xD4):16C2 = C23.288C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):16C2128,1120
(C2xC4xD4):17C2 = C42:15D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):17C2128,1124
(C2xC4xD4):18C2 = C42:16D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):18C2128,1129
(C2xC4xD4):19C2 = C24.244C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):19C2128,1139
(C2xC4xD4):20C2 = C23.308C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):20C2128,1140
(C2xC4xD4):21C2 = C24.249C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):21C2128,1146
(C2xC4xD4):22C2 = C23.316C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):22C2128,1148
(C2xC4xD4):23C2 = C23.318C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):23C2128,1150
(C2xC4xD4):24C2 = C24.254C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):24C2128,1152
(C2xC4xD4):25C2 = C23.322C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):25C2128,1154
(C2xC4xD4):26C2 = C23.324C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):26C2128,1156
(C2xC4xD4):27C2 = C24.258C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):27C2128,1157
(C2xC4xD4):28C2 = C23.327C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):28C2128,1159
(C2xC4xD4):29C2 = C23.328C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):29C2128,1160
(C2xC4xD4):30C2 = C24.269C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):30C2128,1175
(C2xC4xD4):31C2 = C23.344C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):31C2128,1176
(C2xC4xD4):32C2 = C23.345C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):32C2128,1177
(C2xC4xD4):33C2 = C24.276C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):33C2128,1187
(C2xC4xD4):34C2 = C23.356C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):34C2128,1188
(C2xC4xD4):35C2 = C24.278C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):35C2128,1189
(C2xC4xD4):36C2 = C23.359C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):36C2128,1191
(C2xC4xD4):37C2 = C24.282C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):37C2128,1193
(C2xC4xD4):38C2 = C24.283C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):38C2128,1195
(C2xC4xD4):39C2 = C23.364C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):39C2128,1196
(C2xC4xD4):40C2 = C23.367C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):40C2128,1199
(C2xC4xD4):41C2 = C23.434C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):41C2128,1266
(C2xC4xD4):42C2 = C42:17D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):42C2128,1267
(C2xC4xD4):43C2 = C42:18D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):43C2128,1269
(C2xC4xD4):44C2 = C42:19D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):44C2128,1272
(C2xC4xD4):45C2 = C42:20D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):45C2128,1273
(C2xC4xD4):46C2 = C23.443C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):46C2128,1275
(C2xC4xD4):47C2 = C42:21D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):47C2128,1276
(C2xC4xD4):48C2 = C42:22D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):48C2128,1330
(C2xC4xD4):49C2 = C23.500C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):49C2128,1332
(C2xC4xD4):50C2 = C23.502C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):50C2128,1334
(C2xC4xD4):51C2 = C42:24D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):51C2128,1335
(C2xC4xD4):52C2 = C23.530C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):52C2128,1362
(C2xC4xD4):53C2 = C42:29D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):53C2128,1363
(C2xC4xD4):54C2 = C23.535C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):54C2128,1367
(C2xC4xD4):55C2 = C42:30D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):55C2128,1368
(C2xC4xD4):56C2 = C2xC4xD8φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):56C2128,1668
(C2xC4xD4):57C2 = C2xD8:C4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):57C2128,1674
(C2xC4xD4):58C2 = C4xC8:C22φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):58C2128,1676
(C2xC4xD4):59C2 = C2xC4:D8φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):59C2128,1761
(C2xC4xD4):60C2 = C2xD4.2D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):60C2128,1763
(C2xC4xD4):61C2 = C42.211D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):61C2128,1768
(C2xC4xD4):62C2 = C42.221D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):62C2128,1832
(C2xC4xD4):63C2 = C42.225D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):63C2128,1837
(C2xC4xD4):64C2 = C42.227D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):64C2128,1841
(C2xC4xD4):65C2 = C42.232D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):65C2128,1846
(C2xC4xD4):66C2 = C2xC22.11C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):66C2128,2157
(C2xC4xD4):67C2 = C2xC23.33C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):67C2128,2159
(C2xC4xD4):68C2 = C4x2+ 1+4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):68C2128,2161
(C2xC4xD4):69C2 = C2xC22.19C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):69C2128,2167
(C2xC4xD4):70C2 = C2xC23.36C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):70C2128,2171
(C2xC4xD4):71C2 = C2xC22.26C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):71C2128,2174
(C2xC4xD4):72C2 = C2xC22.32C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):72C2128,2182
(C2xC4xD4):73C2 = C2xC22.33C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):73C2128,2183
(C2xC4xD4):74C2 = C2xC22.34C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):74C2128,2184
(C2xC4xD4):75C2 = C2xC22.36C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):75C2128,2186
(C2xC4xD4):76C2 = C22.48C25φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):76C2128,2191
(C2xC4xD4):77C2 = C22.49C25φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):77C2128,2192
(C2xC4xD4):78C2 = C2xD42φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):78C2128,2194
(C2xC4xD4):79C2 = C2xD4:5D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):79C2128,2195
(C2xC4xD4):80C2 = C2xD4:6D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):80C2128,2196
(C2xC4xD4):81C2 = C2xQ8:5D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):81C2128,2197
(C2xC4xD4):82C2 = C2xQ8:6D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):82C2128,2199
(C2xC4xD4):83C2 = D4xC4oD4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):83C2128,2200
(C2xC4xD4):84C2 = C2xC22.45C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):84C2128,2201
(C2xC4xD4):85C2 = C2xC22.47C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):85C2128,2203
(C2xC4xD4):86C2 = C2xC22.49C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):86C2128,2205
(C2xC4xD4):87C2 = C22.64C25φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):87C2128,2207
(C2xC4xD4):88C2 = C2xC22.53C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4):88C2128,2211
(C2xC4xD4):89C2 = C22.70C25φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):89C2128,2213
(C2xC4xD4):90C2 = C4:2+ 1+4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):90C2128,2228
(C2xC4xD4):91C2 = C22.94C25φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):91C2128,2237
(C2xC4xD4):92C2 = C22.95C25φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):92C2128,2238
(C2xC4xD4):93C2 = C22.102C25φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):93C2128,2245
(C2xC4xD4):94C2 = C22.108C25φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):94C2128,2251
(C2xC4xD4):95C2 = C23.144C24φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4):95C2128,2252
(C2xC4xD4):96C2 = C2xC4xC4oD4φ: trivial image64(C2xC4xD4):96C2128,2156

Non-split extensions G=N.Q with N=C2xC4xD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC4xD4).1C2 = C23.8M4(2)φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).1C2128,191
(C2xC4xD4).2C2 = C42.393D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).2C2128,192
(C2xC4xD4).3C2 = C23:M4(2)φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).3C2128,197
(C2xC4xD4).4C2 = C42.43D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).4C2128,198
(C2xC4xD4).5C2 = C2xD4:C8φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).5C2128,206
(C2xC4xD4).6C2 = C42.398D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).6C2128,210
(C2xC4xD4).7C2 = D4:M4(2)φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).7C2128,218
(C2xC4xD4).8C2 = D4:5M4(2)φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).8C2128,222
(C2xC4xD4).9C2 = C4xC23:C4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).9C2128,486
(C2xC4xD4).10C2 = C4xC4.D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).10C2128,487
(C2xC4xD4).11C2 = C4xD4:C4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).11C2128,492
(C2xC4xD4).12C2 = D4:C42φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).12C2128,494
(C2xC4xD4).13C2 = C24.167C23φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).13C2128,531
(C2xC4xD4).14C2 = C42.96D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).14C2128,532
(C2xC4xD4).15C2 = C42.98D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).15C2128,534
(C2xC4xD4).16C2 = C42.100D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).16C2128,536
(C2xC4xD4).17C2 = C2.(C4xD8)φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).17C2128,594
(C2xC4xD4).18C2 = D4:(C4:C4)φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).18C2128,596
(C2xC4xD4).19C2 = C23.22M4(2)φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).19C2128,601
(C2xC4xD4).20C2 = C23:2M4(2)φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).20C2128,602
(C2xC4xD4).21C2 = (C2xSD16):14C4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).21C2128,609
(C2xC4xD4).22C2 = C42.325D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).22C2128,686
(C2xC4xD4).23C2 = C42.109D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).23C2128,687
(C2xC4xD4).24C2 = D4:4C42φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).24C2128,1007
(C2xC4xD4).25C2 = C42:42D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).25C2128,1022
(C2xC4xD4).26C2 = C43:9C2φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).26C2128,1025
(C2xC4xD4).27C2 = C4xC22.D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).27C2128,1033
(C2xC4xD4).28C2 = C4xC4.4D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).28C2128,1035
(C2xC4xD4).29C2 = C24.547C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).29C2128,1050
(C2xC4xD4).30C2 = C23.201C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).30C2128,1051
(C2xC4xD4).31C2 = C24.195C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).31C2128,1054
(C2xC4xD4).32C2 = C42.160D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).32C2128,1058
(C2xC4xD4).33C2 = D4xC4:C4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).33C2128,1080
(C2xC4xD4).34C2 = C23.231C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).34C2128,1081
(C2xC4xD4).35C2 = C23.234C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).35C2128,1084
(C2xC4xD4).36C2 = C23.235C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).36C2128,1085
(C2xC4xD4).37C2 = C23.236C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).37C2128,1086
(C2xC4xD4).38C2 = C24.212C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).38C2128,1089
(C2xC4xD4).39C2 = C23.241C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).39C2128,1091
(C2xC4xD4).40C2 = C24.220C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).40C2128,1099
(C2xC4xD4).41C2 = C23.295C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).41C2128,1127
(C2xC4xD4).42C2 = C42.163D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).42C2128,1130
(C2xC4xD4).43C2 = C23.309C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).43C2128,1141
(C2xC4xD4).44C2 = C23.315C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).44C2128,1147
(C2xC4xD4).45C2 = C24.252C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).45C2128,1149
(C2xC4xD4).46C2 = C24.563C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).46C2128,1151
(C2xC4xD4).47C2 = C24.271C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).47C2128,1179
(C2xC4xD4).48C2 = C23.349C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).48C2128,1181
(C2xC4xD4).49C2 = C23.350C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).49C2128,1182
(C2xC4xD4).50C2 = C23.352C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).50C2128,1184
(C2xC4xD4).51C2 = C23.354C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).51C2128,1186
(C2xC4xD4).52C2 = C23.360C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).52C2128,1192
(C2xC4xD4).53C2 = C24.286C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).53C2128,1198
(C2xC4xD4).54C2 = C23.368C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).54C2128,1200
(C2xC4xD4).55C2 = C23.385C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).55C2128,1217
(C2xC4xD4).56C2 = C24.299C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).56C2128,1218
(C2xC4xD4).57C2 = C24.300C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).57C2128,1219
(C2xC4xD4).58C2 = C42.165D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).58C2128,1268
(C2xC4xD4).59C2 = C42.166D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).59C2128,1270
(C2xC4xD4).60C2 = C42.167D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).60C2128,1274
(C2xC4xD4).61C2 = C42.170D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).61C2128,1279
(C2xC4xD4).62C2 = C42.172D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).62C2128,1294
(C2xC4xD4).63C2 = C42.173D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).63C2128,1295
(C2xC4xD4).64C2 = C24.583C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).64C2128,1296
(C2xC4xD4).65C2 = C42.175D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).65C2128,1298
(C2xC4xD4).66C2 = C23.479C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).66C2128,1311
(C2xC4xD4).67C2 = C42.178D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).67C2128,1312
(C2xC4xD4).68C2 = C42.190D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).68C2128,1365
(C2xC4xD4).69C2 = C24.374C23φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).69C2128,1370
(C2xC4xD4).70C2 = C2xC8:9D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).70C2128,1659
(C2xC4xD4).71C2 = C2xC8:6D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).71C2128,1660
(C2xC4xD4).72C2 = D4xM4(2)φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).72C2128,1666
(C2xC4xD4).73C2 = C2xC4xSD16φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).73C2128,1669
(C2xC4xD4).74C2 = C2xSD16:C4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).74C2128,1672
(C2xC4xD4).75C2 = C42.691C23φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).75C2128,1704
(C2xC4xD4).76C2 = C23:3M4(2)φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).76C2128,1705
(C2xC4xD4).77C2 = D4:7M4(2)φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).77C2128,1706
(C2xC4xD4).78C2 = C42.693C23φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).78C2128,1707
(C2xC4xD4).79C2 = C2xD4.D4φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).79C2128,1762
(C2xC4xD4).80C2 = C2xD4:Q8φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).80C2128,1802
(C2xC4xD4).81C2 = C2xD4:2Q8φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).81C2128,1803
(C2xC4xD4).82C2 = C2xD4.Q8φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).82C2128,1804
(C2xC4xD4).83C2 = C42.219D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).83C2128,1809
(C2xC4xD4).84C2 = C42.222D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).84C2128,1833
(C2xC4xD4).85C2 = C42.228D4φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).85C2128,1842
(C2xC4xD4).86C2 = C2xD4xQ8φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).86C2128,2198
(C2xC4xD4).87C2 = C2xC22.46C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).87C2128,2202
(C2xC4xD4).88C2 = C2xD4:3Q8φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).88C2128,2204
(C2xC4xD4).89C2 = C2xC22.50C24φ: C2/C1C2 ⊆ Out C2xC4xD464(C2xC4xD4).89C2128,2206
(C2xC4xD4).90C2 = C22.90C25φ: C2/C1C2 ⊆ Out C2xC4xD432(C2xC4xD4).90C2128,2233
(C2xC4xD4).91C2 = D4xC42φ: trivial image64(C2xC4xD4).91C2128,1003
(C2xC4xD4).92C2 = D4xC2xC8φ: trivial image64(C2xC4xD4).92C2128,1658

׿
x
:
Z
F
o
wr
Q
<