Copied to
clipboard

G = Dic38order 152 = 23·19

Dicyclic group

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: Dic38, C19⋊Q8, C4.D19, C76.1C2, C2.3D38, Dic19.C2, C38.1C22, SmallGroup(152,3)

Series: Derived Chief Lower central Upper central

C1C38 — Dic38
C1C19C38Dic19 — Dic38
C19C38 — Dic38
C1C2C4

Generators and relations for Dic38
 G = < a,b | a76=1, b2=a38, bab-1=a-1 >

19C4
19C4
19Q8

Smallest permutation representation of Dic38
Regular action on 152 points
Generators in S152
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 107 39 145)(2 106 40 144)(3 105 41 143)(4 104 42 142)(5 103 43 141)(6 102 44 140)(7 101 45 139)(8 100 46 138)(9 99 47 137)(10 98 48 136)(11 97 49 135)(12 96 50 134)(13 95 51 133)(14 94 52 132)(15 93 53 131)(16 92 54 130)(17 91 55 129)(18 90 56 128)(19 89 57 127)(20 88 58 126)(21 87 59 125)(22 86 60 124)(23 85 61 123)(24 84 62 122)(25 83 63 121)(26 82 64 120)(27 81 65 119)(28 80 66 118)(29 79 67 117)(30 78 68 116)(31 77 69 115)(32 152 70 114)(33 151 71 113)(34 150 72 112)(35 149 73 111)(36 148 74 110)(37 147 75 109)(38 146 76 108)

G:=sub<Sym(152)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,107,39,145)(2,106,40,144)(3,105,41,143)(4,104,42,142)(5,103,43,141)(6,102,44,140)(7,101,45,139)(8,100,46,138)(9,99,47,137)(10,98,48,136)(11,97,49,135)(12,96,50,134)(13,95,51,133)(14,94,52,132)(15,93,53,131)(16,92,54,130)(17,91,55,129)(18,90,56,128)(19,89,57,127)(20,88,58,126)(21,87,59,125)(22,86,60,124)(23,85,61,123)(24,84,62,122)(25,83,63,121)(26,82,64,120)(27,81,65,119)(28,80,66,118)(29,79,67,117)(30,78,68,116)(31,77,69,115)(32,152,70,114)(33,151,71,113)(34,150,72,112)(35,149,73,111)(36,148,74,110)(37,147,75,109)(38,146,76,108)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,107,39,145)(2,106,40,144)(3,105,41,143)(4,104,42,142)(5,103,43,141)(6,102,44,140)(7,101,45,139)(8,100,46,138)(9,99,47,137)(10,98,48,136)(11,97,49,135)(12,96,50,134)(13,95,51,133)(14,94,52,132)(15,93,53,131)(16,92,54,130)(17,91,55,129)(18,90,56,128)(19,89,57,127)(20,88,58,126)(21,87,59,125)(22,86,60,124)(23,85,61,123)(24,84,62,122)(25,83,63,121)(26,82,64,120)(27,81,65,119)(28,80,66,118)(29,79,67,117)(30,78,68,116)(31,77,69,115)(32,152,70,114)(33,151,71,113)(34,150,72,112)(35,149,73,111)(36,148,74,110)(37,147,75,109)(38,146,76,108) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,107,39,145),(2,106,40,144),(3,105,41,143),(4,104,42,142),(5,103,43,141),(6,102,44,140),(7,101,45,139),(8,100,46,138),(9,99,47,137),(10,98,48,136),(11,97,49,135),(12,96,50,134),(13,95,51,133),(14,94,52,132),(15,93,53,131),(16,92,54,130),(17,91,55,129),(18,90,56,128),(19,89,57,127),(20,88,58,126),(21,87,59,125),(22,86,60,124),(23,85,61,123),(24,84,62,122),(25,83,63,121),(26,82,64,120),(27,81,65,119),(28,80,66,118),(29,79,67,117),(30,78,68,116),(31,77,69,115),(32,152,70,114),(33,151,71,113),(34,150,72,112),(35,149,73,111),(36,148,74,110),(37,147,75,109),(38,146,76,108)]])

Dic38 is a maximal subgroup of
C152⋊C2  Dic76  D4.D19  C19⋊Q16  D765C2  D42D19  Q8×D19  Dic38⋊C3  C57⋊Q8  Dic114
Dic38 is a maximal quotient of
Dic19⋊C4  C76⋊C4  C57⋊Q8  Dic114

41 conjugacy classes

class 1  2 4A4B4C19A···19I38A···38I76A···76R
order1244419···1938···3876···76
size11238382···22···22···2

41 irreducible representations

dim1112222
type+++-++-
imageC1C2C2Q8D19D38Dic38
kernelDic38Dic19C76C19C4C2C1
# reps12119918

Matrix representation of Dic38 in GL2(𝔽229) generated by

41157
853
,
34156
88195
G:=sub<GL(2,GF(229))| [41,8,157,53],[34,88,156,195] >;

Dic38 in GAP, Magma, Sage, TeX

{\rm Dic}_{38}
% in TeX

G:=Group("Dic38");
// GroupNames label

G:=SmallGroup(152,3);
// by ID

G=gap.SmallGroup(152,3);
# by ID

G:=PCGroup([4,-2,-2,-2,-19,16,49,21,2307]);
// Polycyclic

G:=Group<a,b|a^76=1,b^2=a^38,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of Dic38 in TeX

׿
×
𝔽