Copied to
clipboard

G = C18.6S4order 432 = 24·33

6th non-split extension by C18 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C18.6S4, C9⋊GL2(𝔽3), SL2(𝔽3)⋊D9, Q8⋊C91S3, (Q8×C9)⋊1S3, C6.2(C3⋊S4), C2.3(C9⋊S4), Q81(C9⋊S3), C3.1(C6.6S4), (C9×SL2(𝔽3))⋊1C2, (C3×SL2(𝔽3)).5S3, (C3×Q8).2(C3⋊S3), SmallGroup(432,253)

Series: Derived Chief Lower central Upper central

C1C2Q8C9×SL2(𝔽3) — C18.6S4
C1C2Q8C3×Q8Q8×C9C9×SL2(𝔽3) — C18.6S4
C9×SL2(𝔽3) — C18.6S4
C1C2

Generators and relations for C18.6S4
 G = < a,b,c,d,e | a18=d3=e2=1, b2=c2=a9, ab=ba, ac=ca, ad=da, eae=a-1, cbc-1=a9b, dbd-1=a9bc, ebe=bc, dcd-1=b, ece=a9c, ede=d-1 >

Subgroups: 913 in 76 conjugacy classes, 17 normal (12 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, Q8, C9, C9, C32, C12, D6, SD16, D9, C18, C18, C3⋊S3, C3×C6, C3⋊C8, SL2(𝔽3), D12, C3×Q8, C3×C9, C36, D18, C2×C3⋊S3, Q82S3, GL2(𝔽3), C9⋊S3, C3×C18, C9⋊C8, Q8⋊C9, D36, Q8×C9, C3×SL2(𝔽3), C2×C9⋊S3, Q82D9, Q8⋊D9, C6.6S4, C9×SL2(𝔽3), C18.6S4
Quotients: C1, C2, S3, D9, C3⋊S3, S4, GL2(𝔽3), C9⋊S3, C3⋊S4, C6.6S4, C9⋊S4, C18.6S4

Smallest permutation representation of C18.6S4
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 67 10 58)(2 68 11 59)(3 69 12 60)(4 70 13 61)(5 71 14 62)(6 72 15 63)(7 55 16 64)(8 56 17 65)(9 57 18 66)(19 45 28 54)(20 46 29 37)(21 47 30 38)(22 48 31 39)(23 49 32 40)(24 50 33 41)(25 51 34 42)(26 52 35 43)(27 53 36 44)
(1 21 10 30)(2 22 11 31)(3 23 12 32)(4 24 13 33)(5 25 14 34)(6 26 15 35)(7 27 16 36)(8 28 17 19)(9 29 18 20)(37 57 46 66)(38 58 47 67)(39 59 48 68)(40 60 49 69)(41 61 50 70)(42 62 51 71)(43 63 52 72)(44 64 53 55)(45 65 54 56)
(1 13 7)(2 14 8)(3 15 9)(4 16 10)(5 17 11)(6 18 12)(19 39 71)(20 40 72)(21 41 55)(22 42 56)(23 43 57)(24 44 58)(25 45 59)(26 46 60)(27 47 61)(28 48 62)(29 49 63)(30 50 64)(31 51 65)(32 52 66)(33 53 67)(34 54 68)(35 37 69)(36 38 70)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 18)(12 17)(13 16)(14 15)(19 23)(20 22)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(37 59)(38 58)(39 57)(40 56)(41 55)(42 72)(43 71)(44 70)(45 69)(46 68)(47 67)(48 66)(49 65)(50 64)(51 63)(52 62)(53 61)(54 60)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,67,10,58)(2,68,11,59)(3,69,12,60)(4,70,13,61)(5,71,14,62)(6,72,15,63)(7,55,16,64)(8,56,17,65)(9,57,18,66)(19,45,28,54)(20,46,29,37)(21,47,30,38)(22,48,31,39)(23,49,32,40)(24,50,33,41)(25,51,34,42)(26,52,35,43)(27,53,36,44), (1,21,10,30)(2,22,11,31)(3,23,12,32)(4,24,13,33)(5,25,14,34)(6,26,15,35)(7,27,16,36)(8,28,17,19)(9,29,18,20)(37,57,46,66)(38,58,47,67)(39,59,48,68)(40,60,49,69)(41,61,50,70)(42,62,51,71)(43,63,52,72)(44,64,53,55)(45,65,54,56), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(19,39,71)(20,40,72)(21,41,55)(22,42,56)(23,43,57)(24,44,58)(25,45,59)(26,46,60)(27,47,61)(28,48,62)(29,49,63)(30,50,64)(31,51,65)(32,52,66)(33,53,67)(34,54,68)(35,37,69)(36,38,70), (1,10)(2,9)(3,8)(4,7)(5,6)(11,18)(12,17)(13,16)(14,15)(19,23)(20,22)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(37,59)(38,58)(39,57)(40,56)(41,55)(42,72)(43,71)(44,70)(45,69)(46,68)(47,67)(48,66)(49,65)(50,64)(51,63)(52,62)(53,61)(54,60)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,67,10,58)(2,68,11,59)(3,69,12,60)(4,70,13,61)(5,71,14,62)(6,72,15,63)(7,55,16,64)(8,56,17,65)(9,57,18,66)(19,45,28,54)(20,46,29,37)(21,47,30,38)(22,48,31,39)(23,49,32,40)(24,50,33,41)(25,51,34,42)(26,52,35,43)(27,53,36,44), (1,21,10,30)(2,22,11,31)(3,23,12,32)(4,24,13,33)(5,25,14,34)(6,26,15,35)(7,27,16,36)(8,28,17,19)(9,29,18,20)(37,57,46,66)(38,58,47,67)(39,59,48,68)(40,60,49,69)(41,61,50,70)(42,62,51,71)(43,63,52,72)(44,64,53,55)(45,65,54,56), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(19,39,71)(20,40,72)(21,41,55)(22,42,56)(23,43,57)(24,44,58)(25,45,59)(26,46,60)(27,47,61)(28,48,62)(29,49,63)(30,50,64)(31,51,65)(32,52,66)(33,53,67)(34,54,68)(35,37,69)(36,38,70), (1,10)(2,9)(3,8)(4,7)(5,6)(11,18)(12,17)(13,16)(14,15)(19,23)(20,22)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(37,59)(38,58)(39,57)(40,56)(41,55)(42,72)(43,71)(44,70)(45,69)(46,68)(47,67)(48,66)(49,65)(50,64)(51,63)(52,62)(53,61)(54,60) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,67,10,58),(2,68,11,59),(3,69,12,60),(4,70,13,61),(5,71,14,62),(6,72,15,63),(7,55,16,64),(8,56,17,65),(9,57,18,66),(19,45,28,54),(20,46,29,37),(21,47,30,38),(22,48,31,39),(23,49,32,40),(24,50,33,41),(25,51,34,42),(26,52,35,43),(27,53,36,44)], [(1,21,10,30),(2,22,11,31),(3,23,12,32),(4,24,13,33),(5,25,14,34),(6,26,15,35),(7,27,16,36),(8,28,17,19),(9,29,18,20),(37,57,46,66),(38,58,47,67),(39,59,48,68),(40,60,49,69),(41,61,50,70),(42,62,51,71),(43,63,52,72),(44,64,53,55),(45,65,54,56)], [(1,13,7),(2,14,8),(3,15,9),(4,16,10),(5,17,11),(6,18,12),(19,39,71),(20,40,72),(21,41,55),(22,42,56),(23,43,57),(24,44,58),(25,45,59),(26,46,60),(27,47,61),(28,48,62),(29,49,63),(30,50,64),(31,51,65),(32,52,66),(33,53,67),(34,54,68),(35,37,69),(36,38,70)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,18),(12,17),(13,16),(14,15),(19,23),(20,22),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(37,59),(38,58),(39,57),(40,56),(41,55),(42,72),(43,71),(44,70),(45,69),(46,68),(47,67),(48,66),(49,65),(50,64),(51,63),(52,62),(53,61),(54,60)]])

36 conjugacy classes

class 1 2A2B3A3B3C3D 4 6A6B6C6D8A8B9A9B9C9D···9I 12 18A18B18C18D···18I36A36B36C
order122333346666889999···91218181818···18363636
size1110828886288854542228···8122228···8121212

36 irreducible representations

dim1122222344466
type++++++++++++
imageC1C2S3S3S3D9GL2(𝔽3)S4GL2(𝔽3)C6.6S4C18.6S4C3⋊S4C9⋊S4
kernelC18.6S4C9×SL2(𝔽3)Q8⋊C9Q8×C9C3×SL2(𝔽3)SL2(𝔽3)C9C18C9C3C1C6C2
# reps1121192213913

Matrix representation of C18.6S4 in GL4(𝔽73) generated by

424500
287000
00720
00072
,
1000
0100
002844
001745
,
1000
0100
005729
004416
,
1000
0100
001645
002856
,
0100
1000
0001
0010
G:=sub<GL(4,GF(73))| [42,28,0,0,45,70,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,28,17,0,0,44,45],[1,0,0,0,0,1,0,0,0,0,57,44,0,0,29,16],[1,0,0,0,0,1,0,0,0,0,16,28,0,0,45,56],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C18.6S4 in GAP, Magma, Sage, TeX

C_{18}._6S_4
% in TeX

G:=Group("C18.6S4");
// GroupNames label

G:=SmallGroup(432,253);
// by ID

G=gap.SmallGroup(432,253);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,57,632,142,1011,3784,5681,172,2273,3414,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^18=d^3=e^2=1,b^2=c^2=a^9,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,c*b*c^-1=a^9*b,d*b*d^-1=a^9*b*c,e*b*e=b*c,d*c*d^-1=b,e*c*e=a^9*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽