Extensions 1→N→G→Q→1 with N=C3⋊C8 and Q=S3

Direct product G=N×Q with N=C3⋊C8 and Q=S3
dρLabelID
S3×C3⋊C8484S3xC3:C8144,52

Semidirect products G=N:Q with N=C3⋊C8 and Q=S3
extensionφ:Q→Out NdρLabelID
C3⋊C81S3 = C3⋊D24φ: S3/C3C2 ⊆ Out C3⋊C8244+C3:C8:1S3144,57
C3⋊C82S3 = D12.S3φ: S3/C3C2 ⊆ Out C3⋊C8484-C3:C8:2S3144,59
C3⋊C83S3 = C325SD16φ: S3/C3C2 ⊆ Out C3⋊C8244+C3:C8:3S3144,60
C3⋊C84S3 = D6.Dic3φ: S3/C3C2 ⊆ Out C3⋊C8484C3:C8:4S3144,54
C3⋊C85S3 = C12.31D6φ: S3/C3C2 ⊆ Out C3⋊C8244C3:C8:5S3144,55
C3⋊C86S3 = C12.29D6φ: trivial image244C3:C8:6S3144,53

Non-split extensions G=N.Q with N=C3⋊C8 and Q=S3
extensionφ:Q→Out NdρLabelID
C3⋊C8.S3 = C323Q16φ: S3/C3C2 ⊆ Out C3⋊C8484-C3:C8.S3144,62

׿
×
𝔽