metabelian, supersoluble, monomial
Aliases: D12.1S3, C12.12D6, C6.13D12, C32⋊4SD16, C3⋊C8⋊2S3, C4.2S32, (C3×C6).9D4, C3⋊3(C24⋊C2), C3⋊1(D4.S3), (C3×D12).2C2, C6.2(C3⋊D4), C32⋊4Q8⋊2C2, (C3×C12).4C22, C2.5(C3⋊D12), (C3×C3⋊C8)⋊2C2, SmallGroup(144,59)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12.S3
G = < a,b,c,d | a12=b2=c3=1, d2=a9, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=c-1 >
Character table of D12.S3
class | 1 | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 12 | 2 | 2 | 4 | 2 | 36 | 2 | 2 | 4 | 12 | 12 | 6 | 6 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | 2 | -1 | -1 | 2 | 0 | 2 | -1 | -1 | 1 | 1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ8 | 2 | 2 | 0 | -1 | 2 | -1 | 2 | 0 | -1 | 2 | -1 | 0 | 0 | -2 | -2 | -1 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | -1 | 2 | -1 | 2 | 0 | -1 | 2 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | -1 | 2 | -1 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -2 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ11 | 2 | 2 | 0 | -1 | 2 | -1 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -2 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ12 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ13 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ14 | 2 | 2 | 0 | 2 | -1 | -1 | -2 | 0 | 2 | -1 | -1 | √-3 | -√-3 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ15 | 2 | 2 | 0 | 2 | -1 | -1 | -2 | 0 | 2 | -1 | -1 | -√-3 | √-3 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ16 | 2 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 0 | 0 | -√-2 | √-2 | √3 | -√3 | √3 | -√3 | 0 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | complex lifted from C24⋊C2 |
ρ17 | 2 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 0 | 0 | √-2 | -√-2 | √3 | -√3 | √3 | -√3 | 0 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | complex lifted from C24⋊C2 |
ρ18 | 2 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 0 | 0 | -√-2 | √-2 | -√3 | √3 | -√3 | √3 | 0 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | complex lifted from C24⋊C2 |
ρ19 | 2 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 0 | 0 | √-2 | -√-2 | -√3 | √3 | -√3 | √3 | 0 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | complex lifted from C24⋊C2 |
ρ20 | 4 | 4 | 0 | -2 | -2 | 1 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ21 | 4 | 4 | 0 | -2 | -2 | 1 | 4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ22 | 4 | -4 | 0 | 4 | -2 | -2 | 0 | 0 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ23 | 4 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | -√3 | √3 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ24 | 4 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | √3 | -√3 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 36)(11 35)(12 34)(13 40)(14 39)(15 38)(16 37)(17 48)(18 47)(19 46)(20 45)(21 44)(22 43)(23 42)(24 41)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 19 10 16 7 13 4 22)(2 20 11 17 8 14 5 23)(3 21 12 18 9 15 6 24)(25 41 34 38 31 47 28 44)(26 42 35 39 32 48 29 45)(27 43 36 40 33 37 30 46)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,36)(11,35)(12,34)(13,40)(14,39)(15,38)(16,37)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,19,10,16,7,13,4,22)(2,20,11,17,8,14,5,23)(3,21,12,18,9,15,6,24)(25,41,34,38,31,47,28,44)(26,42,35,39,32,48,29,45)(27,43,36,40,33,37,30,46)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,36)(11,35)(12,34)(13,40)(14,39)(15,38)(16,37)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,19,10,16,7,13,4,22)(2,20,11,17,8,14,5,23)(3,21,12,18,9,15,6,24)(25,41,34,38,31,47,28,44)(26,42,35,39,32,48,29,45)(27,43,36,40,33,37,30,46) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,36),(11,35),(12,34),(13,40),(14,39),(15,38),(16,37),(17,48),(18,47),(19,46),(20,45),(21,44),(22,43),(23,42),(24,41)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,19,10,16,7,13,4,22),(2,20,11,17,8,14,5,23),(3,21,12,18,9,15,6,24),(25,41,34,38,31,47,28,44),(26,42,35,39,32,48,29,45),(27,43,36,40,33,37,30,46)]])
D12.S3 is a maximal subgroup of
S3×C24⋊C2 D24⋊S3 C24.3D6 D24⋊7S3 D12.27D6 D12.28D6 D12.29D6 D12.D6 S3×D4.S3 D12⋊9D6 D12.8D6 D12.9D6 D12.11D6 D12.12D6 D12.15D6 D36.S3 C36.D6 He3⋊3SD16 He3⋊4SD16 C33⋊14SD16 C33⋊16SD16 C33⋊18SD16
D12.S3 is a maximal quotient of
C6.16D24 C12.73D12 C12.Dic6 D36.S3 C36.D6 He3⋊5SD16 C33⋊14SD16 C33⋊16SD16 C33⋊18SD16
Matrix representation of D12.S3 ►in GL6(𝔽73)
46 | 0 | 0 | 0 | 0 | 0 |
27 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
46 | 19 | 0 | 0 | 0 | 0 |
27 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
22 | 0 | 0 | 0 | 0 | 0 |
57 | 63 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [46,27,0,0,0,0,0,27,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[46,27,0,0,0,0,19,27,0,0,0,0,0,0,72,72,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[22,57,0,0,0,0,0,63,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
D12.S3 in GAP, Magma, Sage, TeX
D_{12}.S_3
% in TeX
G:=Group("D12.S3");
// GroupNames label
G:=SmallGroup(144,59);
// by ID
G=gap.SmallGroup(144,59);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,73,31,218,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=c^3=1,d^2=a^9,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of D12.S3 in TeX
Character table of D12.S3 in TeX