Extensions 1→N→G→Q→1 with N=S3×Dic3 and Q=C2

Direct product G=N×Q with N=S3×Dic3 and Q=C2
dρLabelID
C2×S3×Dic348C2xS3xDic3144,146

Semidirect products G=N:Q with N=S3×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic3)⋊1C2 = D12⋊S3φ: C2/C1C2 ⊆ Out S3×Dic3244(S3xDic3):1C2144,139
(S3×Dic3)⋊2C2 = D6.4D6φ: C2/C1C2 ⊆ Out S3×Dic3244-(S3xDic3):2C2144,148
(S3×Dic3)⋊3C2 = S3×C3⋊D4φ: C2/C1C2 ⊆ Out S3×Dic3244(S3xDic3):3C2144,153
(S3×Dic3)⋊4C2 = D125S3φ: C2/C1C2 ⊆ Out S3×Dic3484-(S3xDic3):4C2144,138
(S3×Dic3)⋊5C2 = D6.3D6φ: C2/C1C2 ⊆ Out S3×Dic3244(S3xDic3):5C2144,147
(S3×Dic3)⋊6C2 = C4×S32φ: trivial image244(S3xDic3):6C2144,143

Non-split extensions G=N.Q with N=S3×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic3).C2 = S3×Dic6φ: C2/C1C2 ⊆ Out S3×Dic3484-(S3xDic3).C2144,137

׿
×
𝔽