Extensions 1→N→G→Q→1 with N=C6xDic3 and Q=C2

Direct product G=NxQ with N=C6xDic3 and Q=C2
dρLabelID
Dic3xC2xC648Dic3xC2xC6144,166

Semidirect products G=N:Q with N=C6xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xDic3):1C2 = D6:Dic3φ: C2/C1C2 ⊆ Out C6xDic348(C6xDic3):1C2144,64
(C6xDic3):2C2 = C6.D12φ: C2/C1C2 ⊆ Out C6xDic324(C6xDic3):2C2144,65
(C6xDic3):3C2 = C3xD6:C4φ: C2/C1C2 ⊆ Out C6xDic348(C6xDic3):3C2144,79
(C6xDic3):4C2 = C3xC6.D4φ: C2/C1C2 ⊆ Out C6xDic324(C6xDic3):4C2144,84
(C6xDic3):5C2 = C2xC3:D12φ: C2/C1C2 ⊆ Out C6xDic324(C6xDic3):5C2144,151
(C6xDic3):6C2 = D6.3D6φ: C2/C1C2 ⊆ Out C6xDic3244(C6xDic3):6C2144,147
(C6xDic3):7C2 = C2xS3xDic3φ: C2/C1C2 ⊆ Out C6xDic348(C6xDic3):7C2144,146
(C6xDic3):8C2 = C2xC6.D6φ: C2/C1C2 ⊆ Out C6xDic324(C6xDic3):8C2144,149
(C6xDic3):9C2 = C3xD4:2S3φ: C2/C1C2 ⊆ Out C6xDic3244(C6xDic3):9C2144,163
(C6xDic3):10C2 = C6xC3:D4φ: C2/C1C2 ⊆ Out C6xDic324(C6xDic3):10C2144,167
(C6xDic3):11C2 = S3xC2xC12φ: trivial image48(C6xDic3):11C2144,159

Non-split extensions G=N.Q with N=C6xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xDic3).1C2 = C62.C22φ: C2/C1C2 ⊆ Out C6xDic348(C6xDic3).1C2144,67
(C6xDic3).2C2 = C3xC4:Dic3φ: C2/C1C2 ⊆ Out C6xDic348(C6xDic3).2C2144,78
(C6xDic3).3C2 = Dic3:Dic3φ: C2/C1C2 ⊆ Out C6xDic348(C6xDic3).3C2144,66
(C6xDic3).4C2 = C2xC32:2Q8φ: C2/C1C2 ⊆ Out C6xDic348(C6xDic3).4C2144,152
(C6xDic3).5C2 = Dic32φ: C2/C1C2 ⊆ Out C6xDic348(C6xDic3).5C2144,63
(C6xDic3).6C2 = C3xDic3:C4φ: C2/C1C2 ⊆ Out C6xDic348(C6xDic3).6C2144,77
(C6xDic3).7C2 = C6xDic6φ: C2/C1C2 ⊆ Out C6xDic348(C6xDic3).7C2144,158
(C6xDic3).8C2 = Dic3xC12φ: trivial image48(C6xDic3).8C2144,76

׿
x
:
Z
F
o
wr
Q
<