Extensions 1→N→G→Q→1 with N=C6×Dic3 and Q=C2

Direct product G=N×Q with N=C6×Dic3 and Q=C2
dρLabelID
Dic3×C2×C648Dic3xC2xC6144,166

Semidirect products G=N:Q with N=C6×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×Dic3)⋊1C2 = D6⋊Dic3φ: C2/C1C2 ⊆ Out C6×Dic348(C6xDic3):1C2144,64
(C6×Dic3)⋊2C2 = C6.D12φ: C2/C1C2 ⊆ Out C6×Dic324(C6xDic3):2C2144,65
(C6×Dic3)⋊3C2 = C3×D6⋊C4φ: C2/C1C2 ⊆ Out C6×Dic348(C6xDic3):3C2144,79
(C6×Dic3)⋊4C2 = C3×C6.D4φ: C2/C1C2 ⊆ Out C6×Dic324(C6xDic3):4C2144,84
(C6×Dic3)⋊5C2 = C2×C3⋊D12φ: C2/C1C2 ⊆ Out C6×Dic324(C6xDic3):5C2144,151
(C6×Dic3)⋊6C2 = D6.3D6φ: C2/C1C2 ⊆ Out C6×Dic3244(C6xDic3):6C2144,147
(C6×Dic3)⋊7C2 = C2×S3×Dic3φ: C2/C1C2 ⊆ Out C6×Dic348(C6xDic3):7C2144,146
(C6×Dic3)⋊8C2 = C2×C6.D6φ: C2/C1C2 ⊆ Out C6×Dic324(C6xDic3):8C2144,149
(C6×Dic3)⋊9C2 = C3×D42S3φ: C2/C1C2 ⊆ Out C6×Dic3244(C6xDic3):9C2144,163
(C6×Dic3)⋊10C2 = C6×C3⋊D4φ: C2/C1C2 ⊆ Out C6×Dic324(C6xDic3):10C2144,167
(C6×Dic3)⋊11C2 = S3×C2×C12φ: trivial image48(C6xDic3):11C2144,159

Non-split extensions G=N.Q with N=C6×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×Dic3).1C2 = C62.C22φ: C2/C1C2 ⊆ Out C6×Dic348(C6xDic3).1C2144,67
(C6×Dic3).2C2 = C3×C4⋊Dic3φ: C2/C1C2 ⊆ Out C6×Dic348(C6xDic3).2C2144,78
(C6×Dic3).3C2 = Dic3⋊Dic3φ: C2/C1C2 ⊆ Out C6×Dic348(C6xDic3).3C2144,66
(C6×Dic3).4C2 = C2×C322Q8φ: C2/C1C2 ⊆ Out C6×Dic348(C6xDic3).4C2144,152
(C6×Dic3).5C2 = Dic32φ: C2/C1C2 ⊆ Out C6×Dic348(C6xDic3).5C2144,63
(C6×Dic3).6C2 = C3×Dic3⋊C4φ: C2/C1C2 ⊆ Out C6×Dic348(C6xDic3).6C2144,77
(C6×Dic3).7C2 = C6×Dic6φ: C2/C1C2 ⊆ Out C6×Dic348(C6xDic3).7C2144,158
(C6×Dic3).8C2 = Dic3×C12φ: trivial image48(C6xDic3).8C2144,76

׿
×
𝔽