Extensions 1→N→G→Q→1 with N=C3 and Q=C2×C3⋊D4

Direct product G=N×Q with N=C3 and Q=C2×C3⋊D4
dρLabelID
C6×C3⋊D424C6xC3:D4144,167

Semidirect products G=N:Q with N=C3 and Q=C2×C3⋊D4
extensionφ:Q→Aut NdρLabelID
C31(C2×C3⋊D4) = C2×C3⋊D12φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C324C3:1(C2xC3:D4)144,151
C32(C2×C3⋊D4) = S3×C3⋊D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C3244C3:2(C2xC3:D4)144,153
C33(C2×C3⋊D4) = C2×D6⋊S3φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C348C3:3(C2xC3:D4)144,150
C34(C2×C3⋊D4) = C2×C327D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C372C3:4(C2xC3:D4)144,177

Non-split extensions G=N.Q with N=C3 and Q=C2×C3⋊D4
extensionφ:Q→Aut NdρLabelID
C3.(C2×C3⋊D4) = C2×C9⋊D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C372C3.(C2xC3:D4)144,46

׿
×
𝔽