Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C2×C6

Direct product G=N×Q with N=C2 and Q=S3×C2×C6
dρLabelID
S3×C22×C648S3xC2^2xC6144,195


Non-split extensions G=N.Q with N=C2 and Q=S3×C2×C6
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C2×C6) = S3×C2×C12central extension (φ=1)48C2.1(S3xC2xC6)144,159
C2.2(S3×C2×C6) = Dic3×C2×C6central extension (φ=1)48C2.2(S3xC2xC6)144,166
C2.3(S3×C2×C6) = C6×Dic6central stem extension (φ=1)48C2.3(S3xC2xC6)144,158
C2.4(S3×C2×C6) = C6×D12central stem extension (φ=1)48C2.4(S3xC2xC6)144,160
C2.5(S3×C2×C6) = C3×C4○D12central stem extension (φ=1)242C2.5(S3xC2xC6)144,161
C2.6(S3×C2×C6) = C3×S3×D4central stem extension (φ=1)244C2.6(S3xC2xC6)144,162
C2.7(S3×C2×C6) = C3×D42S3central stem extension (φ=1)244C2.7(S3xC2xC6)144,163
C2.8(S3×C2×C6) = C3×S3×Q8central stem extension (φ=1)484C2.8(S3xC2xC6)144,164
C2.9(S3×C2×C6) = C3×Q83S3central stem extension (φ=1)484C2.9(S3xC2xC6)144,165
C2.10(S3×C2×C6) = C6×C3⋊D4central stem extension (φ=1)24C2.10(S3xC2xC6)144,167

׿
×
𝔽