Extensions 1→N→G→Q→1 with N=C4×S3 and Q=S3

Direct product G=N×Q with N=C4×S3 and Q=S3
dρLabelID
C4×S32244C4xS3^2144,143

Semidirect products G=N:Q with N=C4×S3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1S3 = D125S3φ: S3/C3C2 ⊆ Out C4×S3484-(C4xS3):1S3144,138
(C4×S3)⋊2S3 = D6.6D6φ: S3/C3C2 ⊆ Out C4×S3244+(C4xS3):2S3144,142
(C4×S3)⋊3S3 = S3×D12φ: S3/C3C2 ⊆ Out C4×S3244+(C4xS3):3S3144,144
(C4×S3)⋊4S3 = D6.D6φ: S3/C3C2 ⊆ Out C4×S3244(C4xS3):4S3144,141

Non-split extensions G=N.Q with N=C4×S3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×S3).1S3 = S3×Dic6φ: S3/C3C2 ⊆ Out C4×S3484-(C4xS3).1S3144,137
(C4×S3).2S3 = D6.Dic3φ: S3/C3C2 ⊆ Out C4×S3484(C4xS3).2S3144,54
(C4×S3).3S3 = S3×C3⋊C8φ: trivial image484(C4xS3).3S3144,52

׿
×
𝔽