metabelian, supersoluble, monomial
Aliases: D6.6D6, Dic6⋊5S3, C12.27D6, Dic3.9D6, C4.7S32, (C4×S3)⋊2S3, (S3×C12)⋊3C2, C12⋊S3⋊4C2, C3⋊D12⋊4C2, C3⋊1(C4○D12), (C3×Dic6)⋊7C2, C6.D6⋊1C2, C32⋊4(C4○D4), C6.6(C22×S3), (C3×C6).6C23, C3⋊1(Q8⋊3S3), (S3×C6).7C22, (C3×C12).20C22, (C3×Dic3).4C22, C2.9(C2×S32), (C2×C3⋊S3).4C22, SmallGroup(144,142)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6.6D6
G = < a,b,c,d | a6=b2=1, c6=d2=a3, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=a3c5 >
Subgroups: 316 in 88 conjugacy classes, 32 normal (22 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, Dic6, C4×S3, C4×S3, D12, C3⋊D4, C2×C12, C3×Q8, C3×Dic3, C3×Dic3, C3×C12, S3×C6, C2×C3⋊S3, C4○D12, Q8⋊3S3, C6.D6, C3⋊D12, C3×Dic6, S3×C12, C12⋊S3, D6.6D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, S32, C4○D12, Q8⋊3S3, C2×S32, D6.6D6
Character table of D6.6D6
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | |
size | 1 | 1 | 6 | 18 | 18 | 2 | 2 | 4 | 2 | 3 | 3 | 6 | 6 | 2 | 2 | 4 | 6 | 6 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | 0 | 0 | -2 | -2 | -1 | 2 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | 0 | 0 | 2 | -2 | -1 | 2 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | -1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | 0 | 0 | -2 | 2 | -1 | 2 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | -2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -2 | 1 | -1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -2 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | 0 | 0 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | -2i | 2i | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2i | -2i | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 2i | -2i | 0 | 0 | -2 | 1 | 1 | -√-3 | √-3 | -√3 | √3 | -√3 | 0 | √3 | -i | i | 0 | 0 | complex lifted from C4○D12 |
ρ20 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | -2i | 2i | 0 | 0 | -2 | 1 | 1 | √-3 | -√-3 | -√3 | √3 | -√3 | 0 | √3 | i | -i | 0 | 0 | complex lifted from C4○D12 |
ρ21 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 2i | -2i | 0 | 0 | -2 | 1 | 1 | √-3 | -√-3 | √3 | -√3 | √3 | 0 | -√3 | -i | i | 0 | 0 | complex lifted from C4○D12 |
ρ22 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | -2i | 2i | 0 | 0 | -2 | 1 | 1 | -√-3 | √-3 | √3 | -√3 | √3 | 0 | -√3 | i | -i | 0 | 0 | complex lifted from C4○D12 |
ρ23 | 4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ24 | 4 | -4 | 0 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊3S3, Schur index 2 |
ρ25 | 4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ26 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | -2√3 | 2√3 | √3 | 0 | -√3 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 2√3 | -2√3 | -√3 | 0 | √3 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 3 5 7 9 11)(2 4 6 8 10 12)(13 23 21 19 17 15)(14 24 22 20 18 16)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 13)(12 14)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 15 7 21)(2 14 8 20)(3 13 9 19)(4 24 10 18)(5 23 11 17)(6 22 12 16)
G:=sub<Sym(24)| (1,3,5,7,9,11)(2,4,6,8,10,12)(13,23,21,19,17,15)(14,24,22,20,18,16), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,13)(12,14), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,15,7,21)(2,14,8,20)(3,13,9,19)(4,24,10,18)(5,23,11,17)(6,22,12,16)>;
G:=Group( (1,3,5,7,9,11)(2,4,6,8,10,12)(13,23,21,19,17,15)(14,24,22,20,18,16), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,13)(12,14), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,15,7,21)(2,14,8,20)(3,13,9,19)(4,24,10,18)(5,23,11,17)(6,22,12,16) );
G=PermutationGroup([[(1,3,5,7,9,11),(2,4,6,8,10,12),(13,23,21,19,17,15),(14,24,22,20,18,16)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,13),(12,14)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,15,7,21),(2,14,8,20),(3,13,9,19),(4,24,10,18),(5,23,11,17),(6,22,12,16)]])
G:=TransitiveGroup(24,222);
D6.6D6 is a maximal subgroup of
C24⋊1D6 Dic12⋊S3 D6.1D12 D6.3D12 D12.7D6 Dic6.20D6 Dic6.22D6 D12.13D6 D12.33D6 S3×C4○D12 D12⋊27D6 Dic6⋊12D6 D12⋊13D6 Dic6.26D6 S3×Q8⋊3S3 Dic6⋊5D9 Dic9.D6 C12⋊S3⋊S3 C12.84S32 D6.3S32 Dic3.S32 C12.40S32 C12.58S32 C12⋊S3⋊12S3
D6.6D6 is a maximal quotient of
C62.6C23 C62.11C23 Dic3×Dic6 Dic3.Dic6 C62.18C23 C62.20C23 C62.24C23 D6⋊6Dic6 C62.31C23 C12.28D12 C62.38C23 C62.39C23 C62.58C23 Dic3⋊5D12 C62.67C23 C62.74C23 C62.77C23 C12⋊7D12 Dic3⋊3D12 Dic6⋊5D9 Dic9.D6 C12.S32 D6.3S32 Dic3.S32 C12.40S32 C12.58S32 C12⋊S3⋊12S3
Matrix representation of D6.6D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 8 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,5,0,0,0,0,8,0,0,0,0,0,0,0,1,1,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,1] >;
D6.6D6 in GAP, Magma, Sage, TeX
D_6._6D_6
% in TeX
G:=Group("D6.6D6");
// GroupNames label
G:=SmallGroup(144,142);
// by ID
G=gap.SmallGroup(144,142);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,121,55,116,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=1,c^6=d^2=a^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=a^3*c^5>;
// generators/relations
Export